期刊文献+

基于机床超低待机状态的流水车间能耗调度 被引量:6

Energy consumption scheduling in flow shop based on ultra-low idle state of numerical control machine tools
原文传递
导出
摘要 为降低流水车间能源消耗,引入一种数控机床的超低待机状态,相比于将数控机床待机状态切换为停机状态的节能研究,可在不停机情况下降低数控机床加工间隔状态的功率,避免数控机床频繁启停.针对流水车间加工状态、待机状态及超低待机状态三元调度问题,提出基于工序平移的混合遗传算法,分别定义了不同的工序邻域移动操作,实现数控机床待机状态向超低待机状态和停机状态的转化,形成主动节能调度策略,提升遗传算法求解考虑超低待机状态的流水车间调度问题的优化能力.实验研究表明,启用超低待机状态能够降低流水车间10%以上的能耗,且基于工序平移的混合遗传算法求解考虑超低待机状态的流水车间调度问题性能优于遗传算法. In order to reduce the energy consumption of the flow shop,an ultra-low idle state of the numerical control(NC)machine tools is introduced.Compared with the research on converting the idle state into the shutdown state,the ultra-low idle state can reduce the idle power without stopping the machine and avoiding frequent stopping the numerical control machine tools.A hybrid genetic algorithm based on process translation is proposed to solve the ternary scheduling problem in the flow shop considering the processing state,standby state and ultra-low idle state.The hybrid genetic algorithm defines different process neighborhood movement operations,and realizes the transformation of the NC machine tool from the standby state to the ultra-low idle state or off state.The hybrid genetic algorithm forms an active energy saving scheduling strategy and improves the optimization ability of the genetic algorithm to solve the flow shop energy consumption scheduling problem considering the ultra-low idle state.The experimental results show that the ultra-low idle state can effectively reduce energy consumption of the flow shop by 10%.The performance of the hybrid genetic algorithm is better than that of the genetic algorithm in solving flow shop energy saving scheduling problems considering the ultra-low idle state.
作者 王黎明 刘欣玥 李方义 李剑峰 孔琳 WANG Li-ming;LIU Xin-yue;LI Fang-yi;LI Jian-feng;KONG Lin(School of Mechanical Engineering,Shandong University,Ji’nan 250061,China;Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education,Shandong University,Ji’nan 250061,China)
出处 《控制与决策》 EI CSCD 北大核心 2021年第1期143-151,共9页 Control and Decision
基金 国家自然科学基金项目(51805297) 山东省自然科学基金项目(ZR2017BEE018).
关键词 绿色制造 机床能效 流水车间 车间调度 遗传算法 混合算法 manufacturing for environment energy efficiency flow shop shop schedule genetic algorithm hybrid algorithm
  • 相关文献

参考文献5

二级参考文献53

  • 1张臣,周来水,余湛悦,安鲁陵,周儒荣.基于仿真数据的数控铣削加工多目标变参数优化[J].计算机辅助设计与图形学学报,2005,17(5):1039-1045. 被引量:21
  • 2何彦,刘飞,曹华军,张华.面向绿色制造的工艺规划支持系统及应用[J].计算机集成制造系统,2005,11(7):975-980. 被引量:13
  • 3李建广,姚英学,刘长清,黎世文.基于遗传算法的车削用量优化研究[J].计算机集成制造系统,2006,12(10):1651-1656. 被引量:27
  • 4王凌.混合优化策略和神经网络中若干问题的研究[M].北京:清华大学,1999..
  • 5王凌 王雄.间歇化工过程最优化的研究进展[J].清华大学学报,2000,40(2):265-269.
  • 6KAL YANMOY D. Optimization for engineering design:algo- rithms and examples[M]. Upper Saddle River, N. J. , USA: Prentice Hall, 1995.
  • 7YILDIZ A R. A novel particle swarm optimization approach for product design and manufacturing[J].The International Journal of Advanced Manufacturing Technology, 2009,40 (5/ 6) : 617-628.
  • 8CHEN M, TSAI D. A simulated annealing approach for opti- mization of multi-pass turning operations[J]. International Journal of Production Research, 1996,34(10) :2803-2825.
  • 9SRINIVAS J, GIRI R, YANG S. Optimization of multi-pass turning using particle swarm intelligence [J]. International Journal of Advanced Manufacturing Technology, 2009,40 ( 1/ 2) : 56-66.
  • 10SARAVANAN R, ASOKAN P,VIJA YA KUMAN K. Ma- chining parameters optimization for turning cylindrical stock into a continuous finished profile using genetic algorithm(GA) and simulated annealing(SA)[J]. International Journal of Ad- vanced Manufacturing Technology, 2003,21 (1) : 1-91.

共引文献126

同被引文献48

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部