期刊文献+

基于FPGA的卷积神经网络并行加速器设计 被引量:4

Parallel accelerator design for convolutional neural networks based on FPGA
下载PDF
导出
摘要 近年来,卷积神经网络在许多领域中发挥着越来越重要的作用,然而功耗和速度是限制其应用的主要因素。为了克服其限制因素,设计一种基于FPGA平台的卷积神经网络并行加速器,以Ultra96-V2为实验开发平台,而且卷积神经网络计算IP核的设计实现采用了高级设计综合工具,使用Vivado开发工具完成了基于FPGA的卷积神经网络加速器系统设计实现。通过对GPU和CPU识别率的对比实验,基于FPGA优化设计的卷积神经网络处理一张图片的时间比CPU要少得多,相比GPU功耗减少30倍以上,显示了基于FPGA加速器设计的性能和功耗优势,验证了该方法的有效性。 In recent years,convolutional neural network plays an increasingly important role in many fields.However,power consumption and speed are the main factors limiting its application.In order to overcome its limitations,a convolutional neural network parallel accelerator based on FPGA platform is designed.Ultra96-v2 is used as the experimental development platform,and the design and implementation of convolutional neural network computing IP core adopts advanced design synthesis tools.The design and implementation of convolutional neural network accelerator system based on FPGA is completed by using vivado development tools.By comparing the recognition rate of GPU and CPU,the convolutional neural network based on FPGA optimized design takes much less time to process a picture than CPU,and reduces the power consumption of GPU by more than 30 times.It shows the performance and power consumption advantages of FPGA accelerator design,and verifies the effectiveness of this method.
作者 王婷 陈斌岳 张福海 Wang Ting;Chen Binyue;Zhang Fuhai(College of Electronic Information and Optical Engineering,Nankai University,Tianjin 300350,China)
出处 《电子技术应用》 2021年第2期81-84,共4页 Application of Electronic Technique
关键词 并行计算 卷积神经网络 加速器 流水线 parallel computing convolutional neural network accelerator pipeline
  • 相关文献

参考文献2

二级参考文献14

  • 1MarkoffJ. How many computers to identify a cat?[NJ The New York Times, 2012-06-25.
  • 2MarkoffJ. Scientists see promise in deep-learning programs[NJ. The New York Times, 2012-11-23.
  • 3李彦宏.2012百度年会主题报告:相信技术的力量[R].北京:百度,2013.
  • 410 Breakthrough Technologies 2013[N]. MIT Technology Review, 2013-04-23.
  • 5Rumelhart D, Hinton G, Williams R. Learning representations by back-propagating errors[J]. Nature. 1986, 323(6088): 533-536.
  • 6Hinton G, Salakhutdinov R. Reducing the dimensionality of data with neural networks[J]. Science. 2006, 313(504). Doi: 10. 1l26/science. 1127647.
  • 7Dahl G. Yu Dong, Deng u, et a1. Context-dependent pre?trained deep neural networks for large vocabulary speech recognition[J]. IEEE Trans on Audio, Speech, and Language Processing. 2012, 20 (1): 30-42.
  • 8Jaitly N. Nguyen P, Nguyen A, et a1. Application of pretrained deep neural networks to large vocabulary speech recognition[CJ //Proc of Interspeech , Grenoble, France: International Speech Communication Association, 2012.
  • 9LeCun y, Boser B, DenkerJ S. et a1. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, I: 541-551.
  • 10Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)[OLJ.[2013-08-01J. http://www. image?net.org/challenges/LSVRC/2012/.

共引文献666

同被引文献32

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部