期刊文献+

基于分时MDP的出租车载客预测推荐技术研究 被引量:2

Research on forecast and recommendation technology of taxi passengers based on time-varying Markov decision process
下载PDF
导出
摘要 针对出租车盲目寻客导致空载率高的问题,提出了一种出租车载客热点推荐策略,以最大程度优化匹配乘客过程,提高寻客效率。基于出租车历史轨迹数据,结合热点乘客信息的时间序列特性,提出基于循环神经网络的分段预测(SPBR)算法,以及基于分时马尔可夫决策过程(TMDP)的载客推荐模型。实验表明,SPBR算法预测结果的RMSE比SVR、CART和BPNN等算法分别降低了67.6%、71.1%和64.5%;TMDP模型出租车期望回报比历史期望提升了35.9%。 To solve the problems of unloading rate caused by blind passenger search of taxis,the hotspot recommendation strategy of taxi passengers was proposed.The proposed strategy could optimize the process of matching passengers to the greatest extent to increase the efficiency of passenger search.Based on the historical trajectory data of taxis and the time series characteristics of hotspot passenger information,a segment prediction method was proposed based on recurrent neural network(SPBR)and a passenger recommendation model was proposed based on time-varying Markov decision process(TMDP).Experimental results show that the RMSE predicted by SPBR algorithm is 67.6%,71.1%and 64.5%lower than the SVR,CART and BPNN algorithms.The expected return of taxis based on the TMDP algorithm is 35.9%higher than historical expectations.
作者 王桐 高山 龚慧雯 孙博 WANG Tong;GAO Shan;GONG Huiwen;SUN Bo(College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China;Key Laboratory of Advanced Ship Communication and Information Technology,Harbin Engineering University,Harbin 150001,China)
出处 《通信学报》 EI CSCD 北大核心 2021年第2期37-51,共15页 Journal on Communications
基金 国家自然科学基金资助项目(No.61102105,No.51779050) 国家重点研发计划基金资助项目(No.2016YFB0700100) 哈尔滨市青年后备人才基金资助项目(No.2017RAQXJ036) 中央高校基本科研业务费资金资助项目(No.HEUCFG201831,No.3072020CF0815)。
关键词 出租车空载率 分时马尔可夫决策过程 热点预测 分段预测方法 载客推荐模型 taxi empty loading rate time-varying Markov decision process hotspot prediction segment prediction method passenger recommendation model
  • 相关文献

参考文献7

二级参考文献39

  • 1桂智明,向宇,李玉鉴.基于出租车轨迹的并行城市热点区域发现[J].华中科技大学学报(自然科学版),2012,40(S1):187-190. 被引量:22
  • 2江小平,李成华,向文,张新访,颜海涛.k-means聚类算法的MapReduce并行化实现[J].华中科技大学学报(自然科学版),2011,39(S1):120-124. 被引量:79
  • 3秦大建,李志蜀.基于神经网络的时间序列组合预测模型研究及应用[J].计算机应用,2006,26(B06):129-131. 被引量:16
  • 4谭满春,冯荦斌,徐建闽.基于ARIMA与人工神经网络组合模型的交通流预测[J].中国公路学报,2007,20(4):118-121. 被引量:68
  • 5Bishop R. Floating car data projects worldwide:a selective re- view[ C ]//Proceeding of ITS America annual meeting. [ s. 1. ] :[s. n. ] ,2004:192-197.
  • 6Emam E B, Ai-Deek H. Using real-life dual-loop detector data to develop new methodology for estimating freeway travel time reliabihty [ J ]. Transportation Research Record:Journal of the Transportation Research Board ,2006,1959 ( 1 ) : 140-150.
  • 7Quiroga C A. An integrated GPS-GIS methodology for per- forming travel time studies[ R3. [ s. 1. ] : [ s. n. ,2002.
  • 8Zhu Yanmin, Li Zhi, Zhu Hongzi, et al. A compressive sensing approach to urban traffic estimation with probe vehicles [ J ]. IEEE Transactions on Mobile Computing ,2013,12 (11 ) :2289 -2302.
  • 9Thiagarajan A, Ravindranath L, LaCurts K, et al. VTrack : ac- curate ,energy-aware road traffic delay estimation using mo- bile phones[ C ]//Proceedings of the 7th ACM conference on embedded networked sensor systems. Berkeley:ACM,2009:85 -98.
  • 10Caveney D S. Method and system for predicting a future posi- tion of a vehicle using numerical integration : U. S. , 7865299 (S2) [ P]. 2011-01-04.

共引文献35

同被引文献13

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部