期刊文献+

Nanoceramic composites with duplex microstructure break the strength-toughness tradeoff 被引量:3

原文传递
导出
摘要 There is a strength and fracture toughness tradeoff in nanoceramic composite. The strength varies reciprocally with the grain size whereas the toughness contributed by compressive residual stress increases with the dimension of the second phase. In this work, a novel duplex microstructure with reinforced clusters composing of nanosized grains was proposed and validated using a model system of B_(4)C-TiB_(2) ceramics densified by carbide boronizing. As-obtained ceramics exhibit excellent combined mechanical properties at room temperature, including Vickers hardness, Young's modulus, flexural strength and fracture toughness(by surface crack in flexure method) of 32.1 ± 2.7 GPa, 506.9 ± 2.0 GPa,1175 ± 71 MPa and 5.1 ± 0.4 MPa m^(0.5), respectively. Both strength and toughness are at least ~30 % higher than the counterparts with similar composition but homogenously distributed TiB_(2) grains. Graphite onion was confirmed to be an intermediate product during reactive sintering, it facilitated the grain pullout during fracture and retained the nanometric TiB_(2) grain in the cluster, both of which also contribute the toughening and strengthening mechanisms in the B_(4)C-TiB_(2) ceramics.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第23期1-9,共9页 材料科学技术(英文版)
基金 supported financially by grants from the National Natural Science Foundation of China (NSFC)(No. 51972243 and51521001)。
  • 相关文献

参考文献1

共引文献8

同被引文献27

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部