摘要
Nowadays,searching for the materials with multiple magneto-functional properties and good mechanical properties is vital in various fields,such as solid-state refrigeration,magnetic actuators,magnetic sensors and intelligent/smart devices.In this work,the magnetic-field-induced metamagnetic reverse martensitic transformation(MFIRMT)from paramagnetic martensite to ferromagnetic austenite with multiple magneto-responsive effects is realized in Fe-doped Co-V-Ga Heusler alloys by manipulating the magnetic ordering.The martensitic transformation temperature Tmreduces quasi-linearly with increasing Fe-content.In strikingly contrast with the Fe-free alloys,the magnetization difference(M')across martensitic transformation increases by three orders of magnitude for Fe-doped alloys.The increased M'should be ascribed to the reduction of Tm,almost unchanged Curie temperature of austenite and the increased magnetic moment in the samples with higher Fe-content.The large M'provides strong driving force to realize the MFIRMT and accordingly multiple magneto-responsive effects,such as magnetocaloric,magnetoresistance and magnetostriction effects.Meanwhile,giant Vickers hardness of 518 HV and compressive strength of 1423 MPa are achieved.Multiple magneto-responsive effects with exceptional mechanical properties make these alloys great potential candidates for applications in many fields.
基金
financially supported by the Key Project of Natural Science Foundation of Jiangxi Province(No.20192ACB20004)
the National Natural Science Foundation of China(No.51671097)
the Open Project awarded by National Key Laboratory State Microstructures Physics(No.M32037)。