期刊文献+

两种群捕食者-食饵模型解的整体性态

Global behavior of solutions to a two species predator-prey model
下载PDF
导出
摘要 讨论了两种群捕食者-食饵模型解的整体性态。首先,讨论该模型解的整体存在性和一致有界性;其次,运用线性化方法得出该两种群模型的正平衡点和平凡平衡点均是无条件不稳定的,只有半平凡平衡点是局部渐近稳定的;最后,运用Lyapunov函数法得出该食物链模型的半平凡平衡点是全局渐近稳定的。 The global behavior of solutions to a two species predator-prey model is considered.Firstly,the global existence and uniform boundedness of solutions for this model are discussed.Then,using the linearization,we have learned that the positive equilibrium point and the ordinary equilibrium point is unconditionally instabilized,and that the semi-ordinary equilibrium point of the two species model is locally stabilized.Finally,using the Lyapunov function,we have got the result that the semi-ordinary equilibrium point for the food chain model is globally stabilized.
作者 闫莎 YAN Sha(School of Mathematics and Computer Science,Shaanxi University of Technology,Hanzhong 723000,China)
出处 《陕西理工大学学报(自然科学版)》 2021年第1期69-73,共5页 Journal of Shaanxi University of Technology:Natural Science Edition
基金 陕西省教育厅专项科研项目(17JK0142)。
关键词 捕食者-食饵 稳定性 解的整体性态 predator-prey stability the global behavior of solutions
  • 相关文献

参考文献5

二级参考文献24

  • 1PENG Rui,WANG MingXin.Qualitative analysis on a diffusive prey-predator model with ratio-dependent functional response[J].Science China Mathematics,2008,51(11):2043-2058. 被引量:3
  • 2肖海滨.密度制约的Holling Ⅲ型捕食动力系统极限环的存在惟一性[J].高校应用数学学报(A辑),2006,21(4):395-404. 被引量:6
  • 3叶其孝 李正元.反应扩散方程引论[M].北京:科学出版社,1999..
  • 4KOO1J R E. ZEGELING A. Qualitative properties of two-dimensional predator-prey system [J].Nonlinear Analysis: TMA, 1997, 29 ( 6 ) : 693- 715.
  • 5MURRY J. Mathematical Biology 1 : An Introduction [M]. Interdisciplinary Applied Mathmatics, Vol. 17, New York.. Springer, 2002.
  • 6LORNA S A, POLLY W S. Hopf bifurcation in a predator-preymodel[C]//CHOW S N. ICM (2002) Satellite Conference, Kunming, China, 2002: 30- 34.
  • 7ZHANG R, GUO L, FU S. Global behavior for a diffusive predator-prey model with stage structure and nonlinear density restriction-I: The Case in R" [J]. Boundary Value Problems, 2009(2009), Article Number 378763, DOI: 10. 1155/2009/ 378763, 26 pages.
  • 8ZHANG R, GUO L, FU S, Global behavior for a diffusive predator-prey model with stage structure and nonlinear density restrietion-II: The Case in R^1[J]. Boundary Value Problems, 2009(2009),Article Number 654539 ,DOI: 10. 1155/2009/654539, 19 pages.
  • 9HENRY D. Geometric Theory of Semilinear Parabolic Equations [ M ]. Lecture notes in mathematics, vol. 840, Berlin: Springer, 1993.
  • 10BROWN K J, DUME P C, GARDNER R A. A similinear parabolic systemarising in the theory of superconductivity [ J ]. J Differential Equations, 1981, 40: 232-252.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部