期刊文献+

2~4μm中红外锑化物半导体激光器研究进展(特邀) 被引量:4

Research progress of 2-4μm mid-infrared antimonide semiconductor lasers(Invited)
下载PDF
导出
摘要 2~4μm波段是非常重要的红外大气窗口,工作在这个波段的激光器在气体检测,医疗美容和工业加工领域具有十分巨大的应用价值。锑化物半导体材料低维结构具有窄禁带直接跃迁发光的独特优势,是实现中红外波段半导体激光器的理想材料体系。近年来,国内外锑化物半导体激光器研究不断取得重要进展,先后实现了量子阱发光的波长拓展、大功率单管和阵列激光器的室温连续激射,也实现了多波段的单模激光器的室温连续工作。锑化物半导体低维材料组分复杂、界面钝化性质特殊,材料外延和工艺制备技术难度较大。文中从锑化物半导体激光器的基本原理出发,综述了国内外研究现状,介绍了锑化物材料低维结构激光器的设计方案、关键制备技术的主要进展,分析了今后该类激光器性能优化的重点研发方向等。 The 2-4μm band is a very important infrared atmospheric window.Lasers operating in this band have a wide range of applications in gas detection,medical application and industrial processing.The low-dimensional structure of antiminide semiconductor materials has the unique advantage of narrow forbidden band,direct transition luminescence,and is an ideal material system for realizing mid-infrared semiconductor lasers.In recent years,research on antimonide semiconductor lasers at home and abroad has made important progress,achieving wavelength expansion of quantum well luminescence,room temperature continuous lasing of high-power single chip and laser bars,and continuous room temperature continuous operation of multi-band single-mode lasers.Due to the complex composition of the low-dimensional materials of the antimonide and the special interface passivation properties,the epitaxial materials and process preparation techniques are difficult.Based on the basic principle of antimonide semiconductor lasers,this paper reviewed the research status at home and abroad,introduced the design scheme of the low-dimensional structure lasers antimonide materials,and the main progress of key preparation techniques,and analyzed the performance optimization,focused on research and development direction of such lasers in the future.
作者 杨成奥 张一 尚金铭 陈益航 王天放 佟海保 任正伟 张宇 徐应强 牛智川 Yang Chengao;Zhang Yi;Shang Jinming;Chen Yihang;Wang Tianfang;Tong Haibao;Ren Zhengwei;Zhang Yu;Xu Yingqiang;Niu Zhichuan(State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China;College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《红外与激光工程》 EI CSCD 北大核心 2020年第12期155-163,共9页 Infrared and Laser Engineering
基金 国家自然科学基金(61790580,61790581,61790582,61790583) 广东省重点研发计划(2020B0303020001,2018B030329001)。
关键词 锑化镓 量子阱半导体激光器 红外激光器 GaSb quantum well semiconductor laser infrared laser
  • 相关文献

参考文献6

二级参考文献35

  • 1顾溢,张永刚,刘盛.Strain Compensated AlInGaAs/InGaAs/InAs Triangular Quantum Wells for Lasing Wavelength beyond 2 μm[J].Chinese Physics Letters,2007,24(11):3237-3240. 被引量:4
  • 2Kassi S, Chenevier M, Gianfrani L, Salhi A, Rouillard Y, Ouvrard A and Romanini D 2006 Opt. Express 14 11442.
  • 3Belahsene S, Naehle L, Fischer M, Koeth J, Boissier G, Grech P, Narcy G, Vicet A and Rouillard Y 2011 IEEE. Photon. Technol. Lett. 22 1084.
  • 4Dubinskii M, Post S G, Vizbaras A, Dvinelis E, Trinkunas A, Simonyte I, Greibus M, Kauylas M, Zukauskas T, Songaila R and Vizbaras K 2014 Proc. SP1E 9081 90810.
  • 5P Xing J L, Zhang Y, Liao Y P, Wang J, Xiang W, Xu Y Q, Wang G W, Ren Z W and Niu ZC 2014 Chin. Phys. Lett. 31 054204.
  • 6Carras M, Maisons G, Simozrag B, Garcia M, Parillaud O, Massies J and Marcadet X 2010 Appl. Phys. Lett. 96 161105.
  • 7Von E M, Scheuermann J, Nahle L, Zimmermann C, Hildebrandt L, Fischer M, Koeth J, Weih R, Hofling S and Kamp M 2014 Proc. SP1E 8993 89318.
  • 8Salhi A, Barat D, Romanini D, Rouillard Y, Ouvrard A, Wenaer R, Seufert J, Koeth J, Vicet A and Garnache A 2006 Appl. Opt. 45 4957.
  • 9Hiimmer M, ROf3ner K, Benkert A and Forchel A 2004 IEEE. Photon. TechnoL Lett. 16 380.
  • 10Civi S, Horki V, Simeek T, Hulicius E, Pangrlic J, Oswald J, Peff'fek O, Rouillard Y, Alibert C and Werner R 2005 Spectrochim Acta A 61 3066.

共引文献16

同被引文献67

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部