期刊文献+

精确华林不等式的一个推广

An extension of the sharp Wirtinger inequality
下载PDF
导出
摘要 给出了一类精确的华林不等式:设a≤x1<x2<…<xr≤b,则对任给满足条件f(x1)=f(x2)=…=f(xr)=0的函数f∈Wq^(r)[a,b],有||f||_(p)≤C(p,q)(b-a)^(r+1/p-1/q)||f^((r))||_(q),1≤p,q≤∞.首先,基于拉格朗日插值的积分型余项公式,将C(p,q)的计算转化为一个积分算子的范数;其次,将C(1,1)和C(∞,∞)的值转化为2个显式积分表达式,并将C(2,2)的值转化为计算一个希尔伯特-施密特算子的最大特征值;最后,用一个例子说明. In this study,we give a sharp Wirtinger inequality||f||_(p)≤C(p,q)(b-a)^(r+1/p-1/q)||f^((r))||_(q),1≤p,q≤∞.For an arbitrary f∈Wq^(r)[a,b]with f(x1)=f(x2)=…=f(xr)=0,a≤x1<x2<…<xr≤b.From integral type remainder of Lagrange interpolation,we refer computation of C(p,q)to the norm of an integral operator.We refer values of C(1,1)and C(∞,∞)to two explicit integral expressions and value of C(2,2)to computation of maximum eigenvalue of a Hilbert-Schmidt operator.An example was then given to show our method.
作者 齐宗会 汪晖 刘永平 QI Zonghui;WANG Hui;LIU Yongping(Boustead College,TianJin Commerce University,300384,Tianjin,China;Department of Mathematics,Tianjin Normal University,300387,Tianjin,China;Department of Mathematics,Beijing Normal University,100875,Beijing,China)
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第6期763-770,共8页 Journal of Beijing Normal University(Natural Science)
基金 国家自然科学基金资助项目(11871006)。
关键词 拉格朗日插值 L_(p)-范数 特征值 华林不等式 Lagrange interpolation L_(p)-norm eigenvalue Wirtinger inequality
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部