期刊文献+

COF-42:一种理想的锂硫电池锚定材料 被引量:2

COF-42:an ideal anchoring material for lithium-sulfur batteries
下载PDF
导出
摘要 寻找理想的锚定材料抑制穿梭效应是锂硫电池面临的重要问题之一.本文采用密度泛函方法,研究了四种共价有机框架COFs材料(COF-1,CTF-1,COF-LZU1和COF-42)和硫锂化合物(Li_(2)S_(n))的作用机理.通过分析吸附构型、吸附能、电子密度差分以及态密度等性质,发现COFs材料与硫锂化合物的化学吸附作用主要源于COFs表面极性N和O原子与Li之间的静电作用力.在COF-42/Li_(2)S_(n)吸附构型中,N和O原子与Li之间形成双重类离子键;电子密度差分和Bader电荷差分表明,与其他COFs材料相比,Li_(2)S_(n)和COF-42之间电荷转量最多,因此,COF-42具有最强的锚定作用.比较Li_(2)S_(n)和COF-42以及常用电解质分子1,3-二氧戊环(DOL)和二甲氧基乙烷(DME)的吸附能,证明COF-42可以抑制电解质分子的溶剂化作用;COF-42与COF-1,CTF-1和COF-LZU1相比较,具有良好导电性.因此,COF-42可能是一种理想的锂硫电池锚定材料. Interaction mechanism between four kinds COFs materials and Li_(2)S_(n) was studied by DFT. The chemical adsorption interaction between COFs and Li_(2)S_(n) was studied by analyzing the adsorption structures,binding energies,charge density difference and density of states. The anchoring strength was determined by the electrostatic interaction. For COF-42/Li_(2)S_(n) complex,two Li atoms tend to directly bind to multiple N and O atoms and afford strong Li-N/O ionic bond interaction. Charge density difference and Bader charge difference indicate that the amount of charge transfer between Li2 S and COF-42 is significantly greater than those of COF-1,CTF-1 and COF-LZU1. The binding energies of Li_(2)S_(n) adsorbed on COF-42 exceed that of DOL or DME electrolyte,indicating that COF-42 can resist the solvation effect and alleviate the shuttle of Li_(2)S_(n) . Therefore,COF-42 possibly is an ideal anchoring materials for Li_(2)S_(n) .
作者 唐钰茭 田东旭 燕希强 TANG Yu-Jiao;TIAN Dong-Xu;YAN Xi-Qiang(School of Chemical Engineering,Dalian University of Technology,Dalian 116024,China;Foshan Institute of Hydrogen Energy Industry and New Materials Devolopment,Foshan 528000,China)
出处 《原子与分子物理学报》 CAS 北大核心 2021年第1期112-118,共7页 Journal of Atomic and Molecular Physics
基金 广东省氢能技术重点实验室开放课题。
关键词 穿梭效应 共价有机框架材料 COF-42 密度泛函 锂硫电池 The shuttle effect Covalent Organic Frameworks COF-42 DFT Lithium-sulfur batteries
  • 相关文献

参考文献2

二级参考文献66

  • 1MANTHIRAM A, FU Y, SU Y S.[J].Acc Chem Res,2013,46(5):1125-1134.
  • 2JI X, LEE K T, NAZAR L F.[J].Nat Mater,2009,8(6):500-506.
  • 3JAYAPRAKASH N, SHEN J, MOGANTY S, et al. [J]. Angew Chem, 2011,50(26): 5904-5908.
  • 4SCHUSTER J, HE G, MANDLMEIER B, et al. [J]. Angew Chem, 2012, 51 (15) : 3591-3595.
  • 5ZHANG C F, WU H B,YUAN C Z, et al.[J].Angew Commun, 2012, 51:9592-9595.
  • 6XI K, CAO S,PENG X, et al.[J].Chem Commun,2013,49(22):2192-2194.
  • 7YE H, Y1N Y X, XIN S, et al.[J].J Mater Chem A,2013,1(22):6602-6608.
  • 8WANG D W, ZHOU G, LI F, et al.[J].Phys Chem Chem Phys,2012,14(24):8703-8710.
  • 9LI X, CAO Y, QI W, et al.[J].J Mater Chem A,2011,21(41):16603-16610.
  • 10ZHOU W, WANG C, ZHANG Q, et al.[J].Adv Energy Mater,2015,5(16):1401752-1401760.

共引文献14

同被引文献12

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部