期刊文献+

冷速对Cu10Ag90合金凝固结构的影响 被引量:1

The effect of cooling rate on solidification structure of CuAg alloy
下载PDF
导出
摘要 通过分子动力学对液态Cu10Ag90合金在四种冷速条件下进行快速凝固模拟.结果显示,1×10^(10)和1×10^(11)K/s下系统的平均原子能量分别在750 K和650 K发生突变,冷速越低最终平均原子能量越低;1×10^(12)和1×10^(13)K/s的双体分布函数第二峰出现分裂,表明结构处于非晶态.从1×10^(11)K/s开始出现尖锐小峰,表明此冷速开始出现晶化现象,1×10^(10)K/s下分裂的峰更加尖锐明显,说明体系形成结晶度较高的晶体结构;1×10^(10)和1×10^(11)K/s下系统凝固后晶体结构含量由高到低分别为fcc,hcp,bcc.冷速越低晶体结构数目越多,系统的有序度更高,结构熵越低. The rapid solidification of Cu10Ag90 alloy is investigated under four cooling rates by molecular dynamics(MD) simulation.The result shows that the average atomic energies suddenly change at 750 K and 650 K under 1 ×10^(10),1 ×10^(11) K/s,respectively.The lower cooling rate gets,the lower final average atomic energy.The second peaks at the cooling rates of 1 ×10^(12) and 1 ×10^(13) K/s split into two sub-peaks,indicating that amorphous structure has been formed.There are many sharp major peaks in pair distribution function curves from the cooling rate of 1 ×10^(11) K/s,demonstrating the existence of the crystalline microstructures.With the rise of sharp major peaks,the crystallinity of structure goes up under the cooling rate of 1 ×10^(10) K/s.The number of fcc,hcp,bcc crystal clusters have been formed in order at the cooling rates of 1 ×10^(10) and 1 ×10^(11) K/s.As cooling rate decreases,the order degree gets higher and the structural entropy becomes lower due to the more crystal clusters.
作者 梁永超 张铎恩 LIANG Yong-Chao;ZHANG Duo-En(School of Big Data and Information Engineering,Guizhou University,Guiyang 550025,China)
出处 《原子与分子物理学报》 CAS 北大核心 2021年第2期165-170,共6页 Journal of Atomic and Molecular Physics
基金 国家自然科学基金(11964005)。
关键词 微观结构 CU-AG合金 分子动力学 冷速 Microstructure Cu-Ag alloy Molecular dynamics Cooling rate
  • 相关文献

参考文献8

二级参考文献42

  • 1司岩,石佾.贝尔纳与贝尔纳效应[J].科学学与科学技术管理,1987,8(4):43-43. 被引量:2
  • 2谢发勤,薛玉芳,张军,傅恒志.Cu--5wt%Ni合金的深过冷及快速凝固[J].西北工业大学学报,1997,15(1):163-164. 被引量:3
  • 3Norman A F, Eckter K, Zambon A, et al. Application of microstructure-selection maps to droplet solidification: A case study of the Ni-Cu system. Acta Mater, 1998, 46 (10): 3355~3370.
  • 4Wei B, Yang G C, Zhou Y H. High undercooling and solidification of Ni-32.5% eutectic alloy. Acta Metall Mater, 1991, 39(6): 1249~1258.
  • 5Wei B, Herlach D M, Kurz W. Rapid solidification of undertcooled eutectic and monotectic alloy. Materials Science and Engineering A, 1993, l73: 357~363.
  • 6Honeycutt J D, Andersen H C. Molecular-dynamics study of melting and freezing of small Lennard-Jones clusters. J Phys Chem, 1987, 91: 4950~4963.
  • 7Li H, Wang G H, Ding F, et al. Molecular dynamics computation of clusters in liquid Fe-Al alloy. Phys Lett A, 2001, 280: 325~332.
  • 8Qi Y, Cagin T H, Yoshitaka K, et al. Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals: Cu-Ag and Cu-Ni. Physical Review B, 1999, 59(2): 3527~3533.
  • 9Sutton A P, Chen J. Long -range Finnis-Sinclair potentials. Philos Mag Lett, 1990, 61: 139~146.
  • 10Doye J P K, Wales D J. Global minima for transition metal clusters described by Sutton-Chen potentials. New J Chem, 1998, 22: 733~744.

共引文献367

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部