期刊文献+

基于动态软聚类的航空电子部件LMKELM诊断模型 被引量:1

Local multiple kernel extreme learning machine fault diagnosis model with dynamic fuzzy clustering for avionics
下载PDF
导出
摘要 为提高小样本条件下航空电子设备模块级故障诊断精度,基于动态软聚类的自适应特点与局部多核学习(local multiple kernel learning,LMKL)的局部特征表达能力,提出一种新的局部多核超限学习机(local multiple kernel extreme learning machine,LMKELM)诊断模型。通过引入局部密度的概念进行自适应确定聚类数目,并结合模糊C均值聚类对样本进行划分,在充分体现类内多样性的同时,约减了计算复杂度,实现对样本的动态软聚类。通过构造选通函数解决局部权重二次非凸问题,融合近似得到的局部权重与隶属度信息,实现对测试样本的故障诊断。将该模型应用于某型机旋转变压器激励发生电路,实验结果表明,相比于4种前沿的多核学习方法,该算法在漏警率、虚警率方面表现优异,选用的M1与M2选通函数分别将诊断精度平均值提升2.78%和4.37%。 To improve the module-level fault diagnosis rate for avionics in a small sample size,based on the adaptive feature of dynamic fuzzy clustering and the local feature of local multiple kernel learning(LMKL),a local multiple kernel extreme learning machine(LMKELM)model for avionics is proposed.The model confirms the number of clusters adaptively by introducing the concept of local density.Local density is combined with the fuzzy C-means algorithm to realize dynamic fuzzy clustering,which well reflects the diversity between clusters and reduces calculation.A gating model is constructed to solve the non-convex quadratic problem of local weight.Fault diagnosis of test samples is realized by fusing information of local weight and membership.The proposed model is applied into a certain type of rotary transformer excitation generating circuit.Compared with the four fashionable multiple kernel learning methods,the proposed model performs better in terms of false alarm and missing alarm rate.The experimental result shows that the applied M1 and M2 gating models enhance the average accuracy by 2.78%and 4.37%respectively.
作者 戴金玲 许爱强 DAI Jinling;XU Aiqiang(Naval Aviation University, Yantai 264001, China)
机构地区 海军航空大学
出处 《系统工程与电子技术》 EI CSCD 北大核心 2021年第3期637-646,共10页 Systems Engineering and Electronics
基金 军队预研项目(3020202090302)资助课题。
关键词 故障诊断 局部密度 模糊C算法 局部多核学习 选通模型 fault diagnosis local density fuzzy C-means algorithm local multiple kernel learning gating model
  • 相关文献

参考文献5

二级参考文献24

  • 1孔锐,张国宣,施泽生,郭立.基于核的K-均值聚类[J].计算机工程,2004,30(11):12-13. 被引量:46
  • 2XU Rui,WUNSCH D.Survey of clustering algorithms[J].IEEE Trans on Neural Networks,2005,16(3):645-678.
  • 3SCHOLKOPF B,SMOLA A,MULLER K R.Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computation,1998,10(5):1299-1319.
  • 4GIROLAMI M.Mercer kernel-based clustering in feature space[J].IEEE Trans on Neural Networks,2002,13(3):780-784.
  • 5KIM J,SHIM K H,CHOI S.Soft geodesic kernel K-means[C]//Proc of the 32nd International Conference on Acoustics, Speech, and Signal Processing.2007:429-432.
  • 6CHANDRAKALA S,CHANDRA S C.A density based method for multivariate time series clustering in kernel feature space[C]//Proc of International Joint Conference on Neural Networks.2008:1886-1891.
  • 7LEE K Y,KIM D W,LEE K H,et al.Density-induced support vector data description[J].IEEE Trans on Neural Networks,2007,18(1):284-289.
  • 8Piyaphol Phoungphol,Yanqing Zhang,Yichuan Zhao.Robust Multiclass Classification for Learning from Imbalanced Biomedical Data[J].Tsinghua Science and Technology,2012,17(6):619-628. 被引量:6
  • 9尹刚,张英堂,李志宁,程利军,于继全.基于MSPCA的缸盖振动信号特征增强方法研究[J].振动与冲击,2013,32(6):143-148. 被引量:23
  • 10尹刚,张英堂,李志宁,程利军.运用在线贯序极限学习机的故障诊断方法[J].振动.测试与诊断,2013,33(2):325-329. 被引量:10

共引文献14

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部