期刊文献+

InGaAsP快速外延生长及其在太阳电池中的应用

Rapid Growth of InGaAsP and Its Application in Solar Cells
下载PDF
导出
摘要 四元InGaAsP混晶是一种理想的可用于窄禁带太阳电池制备的半导体材料。本文研究了InP衬底上InGaAsP材料在不同外延生长速度下的掺杂特性和晶体质量。通过电化学电容-电压测试法,实验发现高生长速率下InGaAsP材料的Zn掺杂的掺杂浓度与Ⅲ族源流量无关,而Si掺杂的掺杂浓度随Ⅲ族源流量增加而减少。通过瞬态荧光光谱测试方法,实验发现高生长速率下InGaAsP材料非辐射复合和界面复合占比减少,载流子输运效率得到了提升。最后,带隙组合为1.16 eV/0.88 eV的高生长速率InP基双结电池完成器件工艺后进行测试,其在AM0光照条件下开路电压为1 287 mV,平均电压损失为340 mV。 Quaternary InGaAsP crystal is an ideal material for narrow bandgap solar cells. The doping properties and crystal quality of InP based InGaAsP material grown at different growth rates are studied in this paper. The experiment based on the electrochemical capacitance-voltage(ECV)method shows that Zn doping concentration at high growth rate is constant when Group III source flow changes,and Si doping concentration in high growth rate decreases when Group III source flow increases. Furthermore, the experiment based on the time-resolved photoluminescence(TRPL)method shows that nonradiative recombination and interface recombination of InGaAsP decreases at high growth rate,and the carrier transport efficiency is enhanced. Finally,a high growth rate InP dualjunction solar cell with a band gap combination of 1.16 eV/0.88 eV is tested after the device process is completed. Its open voltage is 1 287 mV under AM0 light condition. The average voltage loss is 340 mV.
作者 李戈 陆宏波 李欣益 张玮 LI Ge;LU Hongbo;LI Xinyi;ZHANG Wei(Shanghai Institute of Space-Power Sources,Shanghai 200245,China)
出处 《上海航天(中英文)》 CSCD 2021年第1期136-141,共6页 Aerospace Shanghai(Chinese&English)
基金 国家自然科学基金(61474076,61704106)。
关键词 太阳电池 INGAASP 窄带隙 高生长速率 辐射复合 solar cell InGaAsP narrow bandgap high growth rate radiative recombination
  • 相关文献

参考文献2

二级参考文献29

  • 1陈鸣波,崔容强,王亮兴,张忠卫,陆剑峰,池卫英.p-n型GaInP_2/GaAs叠层太阳电池研究[J].物理学报,2004,53(11):3632-3636. 被引量:11
  • 2DeSalvo G C, Bamett A M. Investigation of alternative window materials for GaAs solar cells. IEEE Trans Electron Devices, 1993, 40(4): 705.
  • 3Friedman D J, Kurtz S R, Kibbler A E, et al. Back surface fields for GaInP2 solar ceils. Proceedings of the 22nd IEEE Photo- voltaic Specialists Conference, 1991:358.
  • 4Kurtz S R, Olson J M, Friedman D J, et al. Effect of front-surface doping onback-surface passivation in GalnP cells. Proceedings of the 26th IEEE Photovoltaic Specialists Conference, 1997:819.
  • 5Fahrenbruch A L, Bube R H. Fundamentals of solar cells. Aca- demic Press, 1983:67.
  • 6Jaakkola R, Lammasniemi J, Kazantsev A B, et al. Comparison of Alo.511no.49P and Gao.511no.49P window layers for GaAs and GalnAsP solar cells. Proceedings of the 26th IEEE Photovoltaic Specialists Conference, 1997:891.
  • 7Liang Y, Wu Y, Feng D. Development of new semiconduct- ing polymers for high performance solar cells. J Am Chem Soc, 2009, 131(1): 56.
  • 8King R R, Law D C, Edmondson K M. 40% efficient metamor- phic GalnP/GalnAs/Ge multijunction solar cells. Appl Phys Lett, 2007, 90:183516.
  • 9Geisz J F, Kurtz S, Wanlass M W. High-efficiency GalnP/GaAs/InGaAs triple-junction solar cells grown in- verted with a metamorphic bottom junction. Appl Phys Lett, 2007, 91:023502.
  • 10Martla A, L6peza N, Antolina E, et al. Novel semiconductor solar cell structures: the quantum dot intermediate band solar cell. Thin Solid Films, 2006, 511/512:638.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部