期刊文献+

螺旋断层放射治疗系统兆伏级CT图像的增强优化 被引量:1

Image Enhancement of Megavolt CT in Tomotherapy System
下载PDF
导出
摘要 目的针对螺旋断层放射治疗系统采集的兆伏级CT(MVCT)图像质量差,导致自适应放射治疗(DGART)时无法精确定位肿瘤靶区的问题,提出应用计算机图像处理技术对MVCT图像作增强优化处理,并验证其可行性。方法选择2017年2月至2019年12月于医院采用螺旋断层放射治疗(Tomo)系统行放射治疗的10例乳腺癌保乳术后患者作为研究对象,调取所有患者的首日摆位MVCT图像,联合应用非局域均值滤波算法和反锐化掩模算法对其作去噪和锐化图像增强处理,比较未处理的MVCT图像、增强MVCT图像及CT模拟机定位时的千伏级CT(kVCT)图像的清晰度和器官轮廓识别度。结果与未处理的MVCT图像比较,增强MVCT图像的清晰度得到了较大提高,且图像中组织器官的视觉效果接近于定位kVCT图像。在增强MVCT图像上勾画的乳腺癌靶区与定位kVCT图像上勾画的靶区的形状相似性指数(DSC)高于0.93。结论利用非局域均值滤波算法和反锐化掩模算法对Tomo系统的MVCT图像进行增强优化是可行的,增强MVCT图像的质量可达到临床乳腺癌保乳术后放射治疗靶区勾画的标准。 Objective Considering that the delineation accuracy would be affected by the poor quality of the original MVCT images in the subsequent adaptive radiotherapy,the method of applying computer image processing technology to enhance megavolt CT(MVCT)images in tomotherapy system was proposed and its feasibility was verified.Methods Totally 10 breast cancer patients who were treated with tomotherapy(Tomo)after breast-conserving surgery were chosen as the subjects in this study.Their first-day MVCT images were collected and then non-local mean filtering algorithm combined with unsharp masking algorithm were used to enhance the MVCT images by denoising and sharpening.Meanwhile,the image clarity and recognition of the organs’outlines were compared among the original MVCT images,the enhanced MVCT images and the kilovolt CT(kVCT)images acquired during the positioning by the CT analogue machine.Results Compared with the original MVCT images,the clarity of the enhanced MVCT images has greatly been improved,and the visual effect of the organs in the enhanced MVCT images were close to the positioning kVCT images.The similarity coefficient of the delineated target volumes between the enhanced MVCT and the kVCT was higher than 0.93.Conclusion It is feasible to use non-local mean filtering and unsharp masking algorithms to enhance and optimize the MVCT images,and the image quality could reach the standard of delineating the target area of radiotherapy after breast-conserving surgery.
作者 林金勇 Lin Jinyong(Department of Radiation Oncology,Fujian Cancer Hospital&Fujian Medical University Cancer Hospital,Fuzhou Fujian 350014,China;Key Laboratory of OptoElectronic Science and Technology for Medicine,Ministry of Education&Fujian Provincial Key Laboratory for Photonics Technology,Fujian Normal University,Fuzhou Fujian 350007,China)
出处 《医疗装备》 2021年第3期6-8,共3页 Medical Equipment
基金 福建省卫健委青年科研课题(2018-1-12,2016-1-12)。
关键词 螺旋断层放射治疗 兆伏级CT 图像增强 乳腺癌保乳术后放射治疗 Tomotherapy Megavolt CT Image enhancement Radiotherapy after breast-conserving surgery
  • 相关文献

参考文献6

二级参考文献30

  • 1曹建忠,罗京伟,徐国镇,高黎,章众,肖建平,黄晓东.鼻咽癌调强放疗中靶区和正常器官变化规律及临床意义探讨[J].中华放射肿瘤学杂志,2007,16(2):81-85. 被引量:53
  • 2Zhong J, Ning R, Oonver D. Image denoising based on multiscale singularity detection for cone beam CT breast imaging[J]. IEEE Transactions on Medical Imaging, 2004, 23(6) : 696-704.
  • 3Bian Z,Ma J,Huang J.et al. SR-NLM:A sinogram restora- tion induced non-local means image filtering for low-dose computed tomography[J]. Computerized Medical Imaging & Graphics the Official Journal of the Computerized Medical Imaging Society, 20 13.37 (1) : 203-303.
  • 4Buades A, Coil B, Morel J. A review of image denoising algorithms,with a new one[J]. Siam Journal on Multiscale Modeling & Simulation. 2005,4( 2 ) : 490-530.
  • 5Chan local cal p C. Fulton R, Barnett R. et al Postreconstruction non- means filtering of whole-body PET with an anatomi- rior[J]. IEEE transactions on medical imaging. 20 14, 33(3):636-650.
  • 6Huang K, Zhang D, Wang K,et al. Adaptive non-local means denoising algorithm for cone-beam computed tomography projection images[A]. Proc. of Fifth Interna- tional Conference on Image and Graphics[C]. 2009,33- 38.
  • 7Zhuang Z,Chen Y,Shu H,et al. Fast low-dose CT imageprocessing using improved parallelized nonlocal means filtering [A]. Proc. of IEEE International Conference on Medical Biometrics[C]. 2014,147-150.
  • 8Dowson N, Salvado O. Hashed nonlocal means for rapid image filtering[J]. IEEE Transaction on Pattern Analysis & Machine Intelligence,20]1,33(3) :485-499.
  • 9张希梅,曹建忠,罗京伟,徐国镇,高黎,易俊林,黄小东,肖建平,李素艳.鼻咽癌调强放疗中腮腺体积变化的临床动态研究[J].癌症进展,2009,7(4):431-435. 被引量:35
  • 10李建彬,于金明,徐敏.乳腺癌保乳术后放疗进展[J].中华放射肿瘤学杂志,2010,19(2):170-175. 被引量:18

共引文献38

同被引文献8

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部