摘要
软岩特别是膨胀性软岩是巷道底鼓的重要原因之一。根据软岩巷道支护理论和BP神经网络理论,按照信息化施工方法的原理,首先进行了巷道矿压监测,通过底鼓监测数据训练神经网络模型,然后利用Matlab神经网络工具箱进行模型计算,同时预测了未来一段时间底板的高度以反映底板的变化。通过围岩现场应力测试、工程地质调查、室内构件识别试验和理论分析,研究了软岩巷道底鼓的相关特征和具体影响因素。研究提出了有效的底鼓控制对策,对类似工程具有一定的参考意义。
Soft rock,especially expansive soft rock is one of the important reasons for the floor heave of the roadway.According to the theory of soft rock roadway support and BP neural network theory and in accordance with the principles of informationized construction methods,the mine pressure monitoring of the roadway was carried out first,the neural network model was trained through the bottom drum monitoring data,and then the Matlab neural network toolbox was used for model calculation.At the same time,the height of the bottom plate in the future was predicted to reflect the change of the bottom plate.Through field stress test of surrounding rock,engineering geological survey,indoor component identification test and theoretical analysis,the relevant characteristics and specific influencing factors of the floor heave of soft rock roadway were studied.The study put forward an effective kick drum control strategy,which had certain reference significance for similar projects.
作者
李晨旭
LI Chen-xu(Nanhe Coal Industry Co.,Ltd.,Shanxi Coal Transportation and Marketing Group,Jincheng 048400,China)
出处
《煤炭科技》
2021年第1期24-27,共4页
Coal Science & Technology Magazine
关键词
软岩
底鼓
BP神经网络
支护
soft rock
floor heave
BP neural network
supporting