期刊文献+

基于Bi-LSTM和Attention的智能合约分类 被引量:1

Smart Contract Classification Based on Bi-LSTM and Attention
下载PDF
导出
摘要 针对区块链技术存在智能合约服务困难问题,提出基于注意力机制和双向长短期记忆神经网络的智能合约分类。运用Bi-LSTM网络从智能合约源代码和账户信息两个角度进行建模,提取出智能合约的最大特征信息。加入注意力机制的Bi-LSTM模型在Dataset-E、Dataset-N和Dataset-EO数据集上正确率分别达到89.8%、87.9%和85.0%,比同样条件下传统的CNN模型提高6.4%、5.5%和3.7%。仿真结果表明该智能合约分类能捕获到关键特征,提高效率和准确度。 In view of a series of difficult problems in the service of smart contracts suitable for human use in the blockchain technology,this paper proposes a smart contract classification based on the attention mechanism and a two-way long-short memory neural network.This smart contract classification uses the Bi-LSTM network to model from the two perspectives of smart contract source code and account information,and extract the information of the biggest features of the smart contract.Results The accuracy of the Bi-LSTM model with the attention mechanism reached 89.8%,87.9%,and 85.0%in the Dataset-E,Dataset-N,and Dataset-EO datasets,respectively,which is higher than the traditional CNN model under the same conditions 6.4%,5.5%and 3.7%.The simulation results show that the smart contract classification proposed in this paper captures the most critical features more intelligently and improves efficiency and accuracy.
作者 王灿 王冬 WANG Can;WANG Dong(School of Computer Science and Engineering,Shandong University of Science and Technology,Qingdao 266590,China;Tengdong Shengjian Coal Mine,Tengzhou 277522,China)
出处 《软件导刊》 2021年第2期40-43,共4页 Software Guide
基金 国家自然科学青年基金项目(61702305)。
关键词 智能合约分类 区块链技术 双向长短期记忆神经网络 注意力机制 代码语义特征 账户特征 smart contract classification blockchain technology Bidirectional Long and Short-term Memory neural network attention mechanism code semantic features account features
  • 相关文献

参考文献6

二级参考文献30

  • 1田苗苗.数据挖掘之决策树方法概述[J].长春大学学报,2004,14(6):48-51. 被引量:43
  • 2赵世奇,张宇,刘挺,陈毅恒,黄永光,李生.基于类别特征域的文本分类特征选择方法[J].中文信息学报,2005,19(6):21-27. 被引量:21
  • 3贾宁.使用概念基元特征进行自动文本分类[J].计算机工程与应用,2007,43(1):24-26. 被引量:6
  • 4杨学兵,张俊.决策树算法及其核心技术[J].计算机技术与发展,2007,17(1):43-45. 被引量:88
  • 5盛骤,谢式千,潘乘毅.概率论与数理统计[M].北京:高等教育出版社,2010.
  • 6MitchellTM著 曾华军 张银奎译.机器学习[M].北京:机械工业出版社,2003..
  • 7Osuna E,Freund R,Girosi T. Training support vector machines: An application to face detection[A]. Proc of the IEEE Int Conf on Computer Vision and Pattern Recognition[C].New York,1997.130-137.
  • 8Joachims T. Text categorization with support vector machines: Learning with many relevant features[A]. Proc of the European Conf on Machine Learning[C].Berlin: Springer,1998.137-142.
  • 9Yang Yiming, Liu Xin. A re-examination of text categorization methods[A]. Proc of ACM SIGIR Conf on Research and Development in Information Retrieval[C].Berkeley,1999.42-49.
  • 10Rocchio J J. Relevance feedback in information retrieval[A].The SMART Retrieval System Experiments in Automatic Document Processing[C]. Ne Jersey: Prentice Hall Inc,1971.313-323.

共引文献231

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部