期刊文献+

利用分数阶SEIR模型的网络舆情干预 被引量:1

Internet public opinion intervention based on the fractional SEIR model
下载PDF
导出
摘要 为了提高网络信息传播预测模型的干预能力,构建一种改进的具有干预能力的传染病(susceptible-exposed-infective-recovered,SEIR)模型。该模型利用导数新定义将传统的整数阶SEIR模型推广到分数阶SEIR模型中,基于求解的分数阶SEIR模型,综合考虑舆情传播的实际特点和信息传播速率的不同,构建具有干预能力的分数阶SEIR模型。通过典型案例进行舆情干预模拟仿真,分析分数阶SEIR模型对舆情传播影响以及判断干预能力的有效性。结果表明,改进的分数阶SEIR模型可以通过媒体干预和政府干预的方式实现对舆情的干预,能够降低不可控舆情对网络环境的影响。 In order to improve the intervention ability of the network information dissemination prediction model,an improved susceptible-exposed-infective-recovered(SEIR) model is constructed.The traditional integer-order SEIR model is extended to the fractional-order SEIR model by using the new definition of derivative.Based on the solved fractional-order SEIR model and comprehensively considering the actual characteristics of public opinion dissemination and the difference in information dissemination rate,a fractional-order with intervention ability SEIR model is thus constructed.Public opinion intervention simulation is carried out through typical cases and the impact of the fractional SEIR model on the spread of public opinion and judge the effectiveness of the intervention ability is analyzed.Results show that the improved fractional SEIR model can intervene public opinion through media intervention and government intervention and can reduce the impact of uncontrollable public opinion on the network environment.
作者 仝秋娟 索文涛 张建科 董瑞宁 TONG Qiujuan;SUO Wentao;ZHANG Jianke;DONG Ruining(School of Science,Xi'an University of Posts and Telecommunications,Xi'an 710121,China;School of Communications and Information Engineering,Xi'an University of Posts and Telecommunications,Xi'an 710121,China)
出处 《西安邮电大学学报》 2020年第5期87-94,共8页 Journal of Xi’an University of Posts and Telecommunications
关键词 网络舆情 传染病模型 舆情扩散 舆情干预 internet public opinion susceptible-exposed-infective-recovered model public opinion spread public opinion intervention
  • 相关文献

参考文献9

二级参考文献79

共引文献502

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部