期刊文献+

基于深度学习的目标检测算法综述 被引量:60

Review of target detection algorithms based on deep learning
下载PDF
导出
摘要 视觉目标检测作为计算机视觉的一个重要研究方向,已广泛应用于人脸检测、行人检测和无人驾驶等领域。随着大数据、计算机硬件技术和深度学习算法在图像分类中的突破性进展,基于深度学习的目标检测算法成为主流。本文综述了基于深度学习目标检测算法的研究现状和发展方向。首先介绍卷积神经网络(CNN)的研究进展和经典模型;然后对目前主流的基于深度学习的两阶段目标检测算法和单阶段目标检测算法的发展、改进和不足进行归纳;最后对深度学习目标检测两种主流算法进行比较并做出总结和未来展望。 As an important research direction of computer vision,visual object detection has been widely used in face detection,pedestrian detection,unmanned driving and other fields. With the breakthrough of big data,computer hardware technology and deep learning in image classification,target detection algorithm based on deep learning has become the mainstream. Research status and development of target detection algorithm based on deep learning is reviewed. Research progress and classical model for convolutional neural network( CNN) is introduced.Development,improvement and shortcomings of the current mainstream two-stage target detection algorithm and single-stage target detection algorithm based on deep learning is summarized. Compare the two main current algorithms of deep learning target detection and make a summary and future outlook.
作者 吴雪 宋晓茹 高嵩 陈超波 WU Xue;SONG Xiaoru;GAO Song;CHEN Chaobo(School of Electronic Information Engineering,Xi’an Technological University,Xi’an 710021,China)
出处 《传感器与微系统》 CSCD 北大核心 2021年第2期4-7,18,共5页 Transducer and Microsystem Technologies
基金 陕西省重点研发计划资助项目(2018KW-022,2017KW-009)。
关键词 目标检测 卷积神经网络 两阶段目标检测算法 单阶段目标检测算法 target detection convolutional neural network(CNN) two-stage target detection algorithm one-stage target detection algorithm
  • 相关文献

参考文献7

二级参考文献33

  • 1崔锦泰.小波分析导论[M].西安:西安交大出版社,1991..
  • 2Fukuda S,Katagiri R,Hirosawa H.Unsupervised approach for polarimetric SAR image classification using support vector machines[C].In:Geoscience and Remote Sensing Symposium,IGARSS ′02,2002 IEEE International, Volume: 5,2002: 2599~2601
  • 3Chengjun Liu,Wechsler H.A Gabor feature classifier for face recognition[C].In:ICCV 2001 ,Proceedings of the Eighth IEEE International Conference on Computer Vision,Volume 2,2001:270~275
  • 4Cong Shen,Xiao-Gang Ruan,Tian-Lu Mao. Writer identification using Gabor wavelet[C].In:Proceedings of the 4th World Congress on Intelligent Control and Automation,Volume:3,2002:2061~2064
  • 5Resmana Lim. Facial landmarks localization based on fuzzy and Gabor wavelet graph matching[C].In:The 10th IEEE International Conference on Fuzzy Systems,Volume:2,2001:683~686
  • 6Li Huasheng,Yuan Baozong. Face tracking using skin-color model and Gabor wavelets[C].In:6th International Conference on Signal Processing, Volume: 1,2002: 837~840
  • 7Kepenekci B,Boray Tek F,Bozdagi Akar G.Occluded face recognition based on Gabor wavelets[C].In:Proceedings of International Conference on Image Processing,Volume 1,2002:I-293~I-296
  • 8Classifying the motions of human body by using Gabor wavelet[C].In:Proceedings ff the International Conference on Pattern Recognition(ICPR′00), Volume3,2000
  • 9Chengjun Liu,Harry Wechsler. Face Recognition Using Independent Gabor Wavelet Features[C].In:Proceedings of the Third International Conference on Audio-and Video-Based Biometric Person Authentication, 2001
  • 10Oliver Chapelle,Patrick haffiner,Vladimir N Vapnik. Support vector machines for histogram-based image classification[J].IEEE Trans on Neural networks, 1999; 10(5): 1055~1064

共引文献310

同被引文献547

引证文献60

二级引证文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部