摘要
研究了一类线性奇异摄动最优控制问题的空间对照结构,讨论了初始点固定,终端自由的情形.首先根据变分法得到了一阶最优性条件,其次运用退化最优控制问题的解证明了异宿轨道的存在性,从而结合奇异摄动理论证明了原问题空间对照结构解的存在性.进一步根据解的结构,利用边界层函数法构造了奇异摄动最优控制问题一致有效的形式渐近解.最后,通过例子验证了结果的可行性.
In this paper,we consider the contrast structure for a class of linear singularly perturbed optimal control problem with fixed initial and free terminal states.Firstly,the variational method is used to obtain the optimality condition.Secondly,we prove the existence of heteroclinic orbit by the solution of reduced problem,then,the existence of contrast structure solution for the original problem is obtained by the singularly perturbed theory.Moreover,based on the structure of the solution,we construct the uniformly valid formal asymptotic solution for the singularly perturbed optimal control problem by the boundary layer function method.Finally,an example is given to show the main result.
作者
武利猛
倪明康
陆海波
WU LIMENG;NI MINGKANG;LU HAIBO(School of Mathematics and Information Technology,Hebei Norrmal University of Science and Technology,Qinhuangdao 066004,China;School of Mathematical Sciences,East China Normal University,Shanghai 200241,China;School of Econormics and Management,Shanghai Institute of Technology,Shanghai 201418,China)
出处
《应用数学学报》
CSCD
北大核心
2021年第1期105-120,共16页
Acta Mathematicae Applicatae Sinica
基金
国家重点研发计划(2019YFC1407903)
国家自然科学基金(11871217,11901152)
河北省自然科学基金(A2015407063)资助项目。
关键词
奇异摄动
最优控制
空间对照结构
singular perturbation
optimal control
contrast structure