摘要
工业互联网平台中的连接与信息安全有着非常密切的关系,连接越多,关系越复杂,信息安全的潜在问题也就越严重。本文对连接两端的数据和网络环境进行了分析,研究了数据在受到各种非正常改变时可能带来的风险问题。数据即使内容没有被改变,但是只要被非法访问或时序出现偏移,同样也会给工业互联网带来灾难性的影响。为了防止非法数据入侵,必须增强工业互联网信息安全方面的感知能力,使之具有足够强大的免疫功能。这就需要在工业互联网平台中建立一种数据行为的侦测机制,可以通过逻辑计算或机器学习的方法实现这种机制。本文将工业互联网平台的连接构成、信息安全、数据行为和行为侦测构成一个完整的研究对象,建立它们之间的关系模型,为深入研究工业互联网信息安全问题提供良好的基础。
The connection of industrial Internet platform is closely related to information security,the more connections,the more complex the relationship,the more serious the potential problems of information security.In this paper,we analyze the data and network environment at both ends of the connection,and study the risk problems that may be brought by the abnormal changes of data.Even if the content of data has not been changed,as long as the data is illegally accessed or the time sequence deviates,it will also bring disastrous impact to the industrial Internet.In order to prevent illegal data intrusion,it is necessary to enhance the perception ability of industrial Internet information security,so that it has a strong enough immune function.This requires the establishment of a data behavior detection mechanism in the industrial Internet platform,which can be realized by logic computing or machine learning.In this paper,the connection structure,information security,data behavior and behavior detection of industrial Internet platform constitute a complete research object,and the relationship model between them is established,which provides a good foundation for the in-depth study of industrial Internet information security.
出处
《自动化博览》
2021年第1期72-77,共6页
Automation Panorama1
关键词
工业互联网
连接
安全
云计算
边缘计算
Industrial Internet
Connection
Security
Cloud computing
Edge computing