期刊文献+

气垫导轨上橡皮筋滑块系统自由振动研究

Free vibration of rubber band slider system on air cushion track
下载PDF
导出
摘要 在气垫导轨上进行橡皮筋滑块系统的自由振动实验,测量了系统的振动周期和对数减缩。理论分析与实验值相差甚远,说明不能将橡皮筋滑块系统的自由振动按谐振子的黏性阻尼振动处理。提出含分数阶导数振子自由振动模型,采用数值方法和平均法求解含分数阶导数项的二阶常微分方程,发现此模型理论分析结果与实验情况相符,说明采用弹性系数、黏弹度和黏弹系数描述橡皮筋力学性质是可行的。 Free vibration tests of rubber band slider system was conducted on air cushion track to measure the system’s vibration period and logarithmic decrement.The large difference between theoretical analysis and test results showed that the free vibration of rubber band slider system can’t be treated as viscous damping vibration of a harmonic oscillator.Then,a free vibration model of oscillator containing fractional derivative was proposed.The second order ordinary differential equation with fractional derivative term was solved using the numerical method and the average one.It was found that the theoretical analysis results of this model are consistent with the test ones to reveal it is feasible to describe mechanical properties of rubber band using elastic coefficient,viscoelasticity and viscoelastic coefficient.
作者 何松林 黄焱 HE Songlin;HUANG Yan(School of Mechanical and Electrical Engineering,Kunming University,Kunming 650214,China;School of Physical Science and Technology,Kunming University,Kunming 650214,China)
出处 《振动与冲击》 EI CSCD 北大核心 2021年第3期279-283,共5页 Journal of Vibration and Shock
基金 云南省地方本科高校基础研究联合基金(2017FH001-018)。
关键词 橡皮筋 分数阶导数 自由振动 平均法 黏弹性 rubber band fractional derivative free vibration average method viscoelasticity
  • 相关文献

参考文献4

二级参考文献48

  • 1Oldham K B, Spanier J 1974 The Fractional Calculus-Theory and Applications of Differentiation and Integration to Arbitrary Order (New York: Academic Press) pl.
  • 2Podlubny I 1999 Fractional Differential Equations (London: Aca- demic Press) pl0.
  • 3Petras 12011 Fractional-OrderNonlinear System (Beijing: Higher Education Press) p 19.
  • 4Rossikhin Y A, Shitikova M V 2010 Appl. Mech. Rev. 63 010801.
  • 5Riewe F 1997 Phys. Rev. E 53 3581.
  • 6Wang Z Z, Hu H Y 2010 Sci. China Phys. Mech. 53 345.
  • 7Wang Z Z, Du M L 2011 Shock Vib. 18 257.
  • 8Rossikhin Y A, Shitikova M V 1997 Acta Mech. 120 109.
  • 9Li G G, Zhu Z Y, Cheng C J 2011 Appl. Math. Mech. 22 294.
  • 10Cao J Y, Ma C B, Xie H, Jiang Z D 2010 J. Comput. Nonlin. Dt / 5041012.

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部