期刊文献+

非线性随机分数阶微分方程Euler方法的弱收敛性 被引量:2

THE WEAK CONVERGENCE OF EULER METHOD FOR NONLINEAR STOCHASTIC FRACTIONAL DIFFERENTIAL EQUATIONS
原文传递
导出
摘要 论文首先证明了非线性随机分数阶微分方程解的存在唯一性,然后构造了数值求解该方程的Euler方法,并证明了当方程满足一定约束条件时,该方法是弱收敛的.特别地,当分数阶α=0时,该方程退化为非线性随机微分方程,所获结论与现有文献中的相关结论是一致的;当α≠0,且初值条件为齐次时,所获结论可视为现有文献中线性随机分数阶微分方程情形的推广和改进.随后,文末的数值试验验证了所获理论结果的正确性. This paper is concerned with the existence and uniqueness of solutions for nonlinear stochastic fractional differential equations and the weak convergence of Euler method constructed for solving the equations when they satisfy certain constraints.Especially,when fractional orderα=0,the equations are degenerated to nonlinear stochastic differential equations,and the conclusions obtained from this paper are consisted with the relevant results;whenα≠0 and the initial condition is homogeneous,the conclusions can be regarded as the generalization and improvement of linear stochastic fractional differential equations in the existing literature.Finally,numerical examples illustrate the effectiveness of the theoretical results.
作者 朱梦姣 王文强 Zhu Mengjiao;Wang Wenqiang(Hunan Key Laboratory for Computation and Simulation in Science and Engineering,Xiangtan University,Xiangtan 411105 China)
出处 《计算数学》 CSCD 北大核心 2021年第1期87-109,共23页 Mathematica Numerica Sinica
基金 国家自然科学基金(12071403) 湖南省教育厅重点项目(18A049)资助.
关键词 随机分数阶微分方程 解的存在唯一性 EULER方法 弱收敛性 CAPUTO导数 Nonlinear stochastic fractional differential equations Existence and uniqueness of solutions Euler method Weak convergence Caputo derivative
  • 相关文献

参考文献5

二级参考文献26

  • 1Chang C C. Numerical Solution of Stochastic Differential Equations[D]. University of California, Berkeley: Ph.D. Dissertation, 1985.
  • 2Lubich Ch. Discretized fractional calculus[J]. SIAM J. Math. Anal., 1986, 17(3): 704-716.
  • 3Podlubny Igor. Fractional differential equations[M]. San Diego: Academic press, 1999.
  • 4Anh V V, Mcvinish R. Fractional differential equations driven by Levy noise[J]. Journal of Applied Mathematics and Stochastic Analysis, 2003, 16(2): 97-119.
  • 5Debbia Latifa, Dozzi Marco. On the solutions of nonlinear stochastic fractional partial differential equations in one spatial dimension[J] Stochastic Processes and their Applications, 2005, (115): 1764-178I.
  • 6Kuo Hui-Hsiung. Introduction to Stochastic Integration[M]. New York: Springer-Verlag, 2006.
  • 7Mao Xuerong. Stochastic Differential Equations and their Applications[M]. Chichester: Horwood, 2007.
  • 8Anh V V, Yong J M, Yu Z G. Stochastic modeling of the auroral electrojet index[J]. Journal of Geophysical Research, 2008, (113): 1-16.
  • 9Jumarie G. Modeling fractional stochastic systems as non-random fractional dynamics driven by Brownian motions[J]. Applied Mathematical Modelling, 2008, 32(5): 836-859.
  • 10Gradinaru Mihai, Nourdin Ivan. Milstein's type schemes for fractional SDEs[J]. Annales de I'Institut Henri Poincare(B), Probability and Statistics, 2009, 45(4): 1085-1098.

共引文献7

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部