期刊文献+

基于CFD的水平轴风力机叶尖小翼增功研究 被引量:4

CFD-BASED POWER ENHANCEMENT OF WINGLETS FOR HORIZONTAL-AXIS WIND TURBINES
下载PDF
导出
摘要 基于风力机叶片增功装置设计要求,以NREL 5 MW叶片为设计原型,以扭角、上反角及后掠角3种小翼外形参数为优化因素设计正交试验表,每种因素分别选取4个水平值,采用计算流体力学(CFD)方法对加装16种不同构型小翼的叶片进行数值模拟。计算结果表明,叶片整体可增功约1.466%,同时推力增加约1.570%;影响扭矩的最主要因素为扭角,影响推力的最主要因素为上反角;通过分析叶片近尾迹流场发现,优化的叶尖小翼布局可改变叶片叶尖涡强度分布,调整叶尖翼型截面气动力特性,进而改善叶片气动性能。 For the power enhancement of horizontal-axis wind turbine blades,the NREL 5 MW blade with 16 winglet profiles were used in numerical simulation of computational fluid dynamics(CFD). The geometrical parameters in consideration include twist angle,dihedral angle and sweep angle. In order to reduce the overall computational costs,orthogonal tables were established for the parameters above with four per each. Current results showed that,with the optimal configuration the maximum power increases approximately by1.466% and the thrust increases by 1.57%. It is found that twist angle plays the most important role in the torque of wind turbine and so is dihedral angle to thrust. We also analyzed the wake flow behind the blade disk. It is shown that the optimal winglet layout produces a re-distribution of the tip vortex structure of blades and then the improvement of the aerodynamic performance of wind turbine blade is expectable.
作者 陈恺 张震宇 王同光 黄辉秀 Chen Kai;Zhang Zhenyu;Wang Tongguang;Huang Huixiu(Jiangsu Key Laboratory of Hi-Tech Research for Wind Turbine Design,College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;Key Laboratory of Offshore Wind Turbine of Jiangsu Province,Lianyungang 222000,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2021年第1期272-278,共7页 Acta Energiae Solaris Sinica
基金 国家重点研发计划(2019YFE0192600) 国家自然科学基金(11172135) 江苏高校优势学科建设工程资助项目。
关键词 风力机 气动特性 计算流体力学 优化设计 wind turbines aerodynamics computational fluid dynamics(CFD) optimal design
  • 相关文献

参考文献1

二级参考文献10

  • 1陈明岩,齐孟卜.翼尖帆片的增升减阻研究[J].航空学报,1994,15(6):641-646. 被引量:6
  • 2HAND M M,SIMMS D A,FINGERSH L J. Unsteady aerodynamics experiment phase Ⅵ:Wind tunnel test configurations and available data campaigns[R].NREL/TP-500-29955[R].NREL,2001.
  • 3SΦRENSEN N N,MICHELSEN J,SCHRECK S. Navier-Stokes predictions of the NREL phase VI rotor in the NASA Ames 80ft× 120ft wind tunnel[J].Wind Ener gy,2002,(2-3):151-169.
  • 4VERMEER L J,SORENSEN J N,CRESPO A. Wind turbine wake aerodynamics[J].Progress in Aerospace Sciences,2003,(6-7):467-510.
  • 5VERSTEEG H K,MALALASEKERA W. An introduction to computational fluid dynamics the finite vol ume method[M].Pearson Education,Inc,2007.
  • 6MENTER FR. Two-equation eddy-viscosity turbulence models for engineering applications[J].AIAA Journal,1994,(08):1598-1605.
  • 7JOHANSEN J,SORENSEN N N. Aerodynamic investigation of winglets on wind turbine blades using CFD Risφ-R 1543(EN)[R].2006.
  • 8DEB K,PRATA P A,AGARWAL S. A fast and elitist multi-objective genetic algorithm:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation,2002,(02):182-197.
  • 9肖京平,武杰,陈立,史喆羽.风力机叶尖涡尾迹结构PIV测量研究[J].应用数学和力学,2011,32(6):683-692. 被引量:20
  • 10许波峰,王同光.基于自由涡尾迹法和面元法全耦合风力机气动特性计算[J].南京航空航天大学学报,2011,43(5):592-597. 被引量:16

共引文献2

同被引文献35

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部