期刊文献+

基于Elman神经网络的联合循环机组燃烧室温度模型建模 被引量:5

Modeling of Combustion Chamber Temperature Model of Combined Cycle Unit Based on Elman Neural Network
下载PDF
导出
摘要 燃气-蒸汽联合循环机组燃烧室温度模型具有非线性、强耦合的特点,难以建立其精确的过程控制模型。针对这一问题,文中提出了一种基于Elman神经网络的燃烧室温度模型建模。该模型利用不同输入下的输出响应作为训练集数据,利用了Elman神经网络具有以任意精度逼近非线性系统的优点对Elman神经网络进行训练。该模型还利用BPTT算法对误差随时间进行反向传播,并利用SGD算法对网络权值进行优化。试验结果表明,新模型的各项指标均优于原传递函数模型,Elman神经网络模型在单位阶跃输入信号和单位斜坡输入信号下的ITAE指标分别为16.1034、8.9901,输出跟踪输入的误差分别为0.039%和0.035%。 The combustion chamber temperature model of a gas-steam combined cycle unit is nonlinear and strongly coupled,so it is difficult to establish an accurate process control model.To solve the problem,an Elman neural network-based combustion chamber temperature model is proposed in this study.This model uses the output response under different inputs as training set data,and uses the advantage of Elman neural network to approximate non-linear systems with arbitrary accuracy to train Elman neural network.The BPTT algorithm is adopted to back-propagate errors over time,and the SGD algorithm is utilized to optimized network weights.The experimental results show that each index is better than the original transfer function model.The ITAE index of the Elman neural network model under the unit step input signal and the unit ramp input signal are 16.1034 and 8.9901,respectively,and the errors of the outputs tracking inputs are 0.039%and 0.035%.
作者 窦征立 王亚刚 DOU Zhengli;WANG Yagang(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《电子科技》 2021年第3期60-64,共5页 Electronic Science and Technology
基金 国家自然科学基金(61074087)。
关键词 ELMAN神经网络 联合循环 燃烧室 温度模型 非线性系统 ITAE Elman neural network combined cycle combustion chamber temperature model non-linear system ITAE
  • 相关文献

参考文献5

二级参考文献45

  • 1徐清.燃气-蒸汽联合循环机组整体性能保证方式探讨[J].中国电机工程学报,2007,27(z1):70-74. 被引量:6
  • 2王培红,汪孟乐.等效抽汽法在再热机组中的应用[J].汽轮机技术,1996,38(6):332-335. 被引量:8
  • 3仲卫进,艾芊.扩展卡尔曼滤波在动态负荷参数辨识中应用[J].电力自动化设备,2007,27(2):47-50. 被引量:18
  • 4ROWEN I W.Simplified mathematical representations of single shaft gas turbines in mechanical drive service[J].Turbo machinery Int,1992(8):26 -32.
  • 5Jong-Wook Kim,Sang Woo Kim.Design of Incremental Fuzzy PI Controllers for a Gas-turbine Plant[J].IEEE/ASME Transactions on Mechatronics.2003,8(3):410 -414.
  • 6Bagnasco A,Delfino B,Denegri G B.etc.Massucco.Management and Dynamic Performances of Combined Cycle Power Plants During Parallel and Islanding Operation[J].IEEE Transactions on Energy Conversion,1998,23 (2):194-201.
  • 7Ahmadi P, Dincer I, Rosen M A. Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants[J].Energy, 2011, 36(10): 5886-5898.
  • 8Roosen P, Uhlenbruck S, Lucas K. Pareto optimization of a combined cycle power system as a decision support tool for trading off investment vs. operating costs [J]. International Journal of Thermal Sciences, 2003, 42(6): 553-560.
  • 9Lozano M A, Valero A. Theory of the exergetic, cost [J]. Energy, 1993; 18(9).. 939-960.
  • 10Xu W, RUDNICKY A. Can artificial neural networks learn models? [C]// International Confer- ence on Statistical Language Processing, 2000.

共引文献62

同被引文献47

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部