期刊文献+

一种低参数的孪生卷积网络实时目标跟踪算法 被引量:2

A Low Parameter Real-Time Target Tracking Algorithm Based on Siamese Convolutional Network
下载PDF
导出
摘要 针对基于深度学习的目标跟踪算法模型参数多、难以部署于嵌入式设备上的问题,提出一种改进的孪生卷积网络实时目标跟踪算法。设计一个非对称卷积模块来构建整个网络框架,通过非对称卷积模块的压缩层减少模型参数量,利用非对称层进行特征融合,以在保证精度的同时压缩模型大小。使用三元组损失函数代替逻辑损失函数进行模型训练,在输入不变的情况下提取表达性更强的深度特征,从而完成目标跟踪任务并提高模型的跟踪精度。在GOT-10K、OTB100和VOT2016基准上对算法性能进行测试,结果表明,该算法能够将模型大小降为3.8×106,且速度与精度均优于SiamFC、KCF和DAT等跟踪算法。 The existing target tracking algorithms based on deep learning face deployment problems on embedded devices due to their large number of parameters.To address the problems,this paper proposes a real-time target tracking algorithm based on low parameter siamese convolutional network. By designing an asymmetric convolution module to build the entire network framework,the compression layer of the asymmetric convolution module is used to reduce the number of parameters,and the asymmetric layer is used for feature fusion to reduce the size of the model while maintaining accuracy. At the same time,the triple loss function is used to replace the logical loss function for model training,and the more expressive depth features are extracted for target tracking with the same input,which improves the tracking accuracy of the model. The performance of the algorithm is tested on the GOT-10 K,OTB100 and VOT2016 benchmarks.Experimental results show that the algorithm reduces the model size to 3.8×10~6,and outperforms SiamFC,KCF,DAT and other tracking algorithms in terms of speed and accuracy.
作者 罗朔 侯进 谭光鸿 韩雁鹏 LUO Shuo;HOU Jin;TAN Guanghong;HAN Yanpeng(The School of Information Science and Technology,Southwest Jiaotong University,Chengdu 611756,China)
出处 《计算机工程》 CAS CSCD 北大核心 2021年第2期84-89,共6页 Computer Engineering
基金 浙江大学CAD&CG国家重点实验室开放课题“基于深度学习的调制识别技术的研究”(A1823)。
关键词 目标跟踪 低参数模型 孪生卷积网络 实时性 非对称卷积 三元组损失 target tracking low parameter model siamese convolutional network real-time performance asymmetric convolution triplet loss
  • 相关文献

参考文献4

二级参考文献107

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2Cannons K J,Gryn J M, Wildes R P. Visual Tracking Using a Pixelwise Spatiotemporal Oriented Energy Representation : C 3//Proceedings of the 11 th European Conference on Computer Vision. New York,USA : ACM Press ,2010:511-524.
  • 3Liu Tianjian, Zhang Zutao. Adaptive Double Kalman Filter and Mean Shift for Robust Fast Object Track- ing[ J]. International Journal of Advancements in Comoutinz Technololzv .2013.5 ( 6 ) :349-356.
  • 4Stalder S, Grabner H, van Gool L. Beyond Semi- supervised Tracking: Tracking Should Be as Simple as Detection, but Not Simpler than Recognition [ C ]// Proceedings of IEEE International Conference on Computer Vision Workshops. Washington D. C. , USA: IEEE Press ,2009 : 1409-1416.
  • 5Ning Jifeng, Shi Wuzhen, Yang Shuqin, et al. Visual Tracking with Online Multiple Instance Learning [ J ]. Image and Vision Computing ,2009,31 ( 11 ) :983-990.
  • 6Kalal Z, Matas J, Mikolajczyk K. P-N Learning: Bootstrapping Binary Classifiers by Structural Con- straints [ C 1//Proceedings of IEEE Conference on Com- puter Vision and Pattern Recognition. Washington D. C., USA :IEEE Press,2010:49-56.
  • 7Szeliski R. Image Alignment and Stitching: A TutorialE J:. Foundations and Trends in Computer Graphics and Vision ,2006,2 ( 1 ) : 101-104.
  • 8Ning Jifeng, Zhang Lei. Robust Mean-shift Tracking with Corrected Background-weighted Histogram E J]. IET Computer Vision,2012,6( 1 ) :62-69.
  • 9Mobahi H, Zitnick C L, Ma Y. Seeing Through the Blur:C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press ,2012 : 1736-1743.
  • 10Dalal N,Triggs B. Histograms of Oriented Gradients for Human Detection E C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA : IEEE Press,2005 : 886-893.

共引文献87

同被引文献27

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部