期刊文献+

基于双阶段网络的交互式目标分割算法 被引量:3

Interactive Target Segmentation Algorithm Based on Two-Stage Network
下载PDF
导出
摘要 针对已有多数交互式分割方法交互方式单一、预测结果精度较低的问题,构建一种基于双阶段网络的目标分割模型ScribNet,以实现更完整和精细的交互式目标分割。采用灵活涂画的交互方式,通过编码形成交互指导信息。设计骨架随机性仿真算法,实现大数据下的模拟交互操作。在传统分割模型中引入预测优化模块,形成双阶段网络结构,以充分利用交互指导信息。在COCO和PASCAL数据集上的实验结果表明,与DEXTR、GrabCut等方法相比,ScribNet模型的分割精度较高。 Most of the existing interaction segmentation methods are faced with the single interaction mode and inaccurate prediction results.To address the problem,this paper proposes a target segmentation model called ScribNet based on two-stage network to realize more complete and precise interactive target segmentation.The model adopts the scribbling interaction mode,and encodes the information to form interaction guidance.A skeleton randomness simulation algorithm is designed to perform simulated interactions under big data. Then a prediction optimization module is introduced into the traditional segmentation model to form a two-stage network architecture to fully use the interaction guidance information.Experimental results on COCO and PASCAL datasets show that compared with DEXTR,GrabCut and other methods,the proposed ScribNet has a higher segmentation accuracy.
作者 张华悦 张顺利 张利 ZHANG Huayue;ZHANG Shunli;ZHANG Li(Department of Electronic Engineering,Tsinghua University,Beijing 100084,China)
出处 《计算机工程》 CAS CSCD 北大核心 2021年第2期300-306,共7页 Computer Engineering
基金 国家自然科学基金(61871248,61976017)。
关键词 模式识别 深度学习 交互式目标分割 涂画式交互 双阶段网络 pattern recognition deep learning interactive target segmentation scribbling interaction two-stage network
  • 相关文献

参考文献2

二级参考文献16

  • 1Zhang Tao,Freedman D.Tracking Objects Using Density Matching and Shape Priors[C]//Proceedings of the 9th IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2003:1056-1062.
  • 2Osher S,Paragios N.Geometric Level Set Methods in Imaging,Vision,and Graphics[M].Berlin,Germany:Springer-Verlag,2003.
  • 3Malladi R,Sethian J A,Vemuri B C.Shape Modeling with Front Propagation:A Level Set Approach[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,17(2):158-175.
  • 4Caselles V,Kimmel R,Sapiro G.Geodesic Active Contours[J].International Journal of Computer Vision,1997,22(1):61-79.
  • 5Chan T F,Vese L A.Active Contours Without Edges[J].IEEE Transactions on Image Processing,2001,10(2):266-277.
  • 6Rousson M,Deriche R.A Variational Framework for Active and Adaptative Segmentation of Vector Valued Images[C]//Proceedings of 2002 Workshop on Motion and Video Computing.Washington D.C.,USA:IEEE Press,2002:56-61.
  • 7Mumford D,Shah J.Optimal Approximations by Piecewise Smooth Functions and Associated Variational Problems[J].Communications on Pure and Applied Mathematics,1989,42(5):577-685.
  • 8Mumford D,Shah J.Boundary Detection by Minimizing Functionals[J].Image Understanding,1988,53(2):19-43.
  • 9Xu Chenyang,Prince J L.Snakes,Shapes,and Gradient Vector Flow[J].IEEE Transactions on Image Processing,1998,7(3):359-369.
  • 10Chuang Cheng-hung,Lie Wen-nung.A Downstream Algorithm Based on Extended Gradient Vector Flow Field for Object Segmentation[J].IEEE Transactions on Image Processing,2004,13(10):1379-1392.

共引文献6

同被引文献18

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部