期刊文献+

改进的PCA-LDA人脸识别算法的研究 被引量:9

Research on Improved PCA-LDA Face Recognition Algorithm
下载PDF
导出
摘要 主成分分析算法(PCA)和线性鉴别分析算法(LDA)被广泛用于人脸识别技术中,但是PCA由于其计算复杂度高,致使人脸识别的实时性达不到要求。线性鉴别分析算法存在“小样本”和“边缘类”问题,降低了人脸识别的准确性。针对上述问题,提出使用二维主成分分析法(2DPCA)与改进的线性鉴别分析法相融合的方法。二维主成分分析法提取的特征比一维主成分分析法更丰富,并且降低了计算复杂度。改进的线性鉴别分析算法重新定义了样本类间离散度矩阵和Fisher准则,克服了传统线性鉴别分析算法存在的问题,保留了最有辨别力的信息,提高了算法的识别率。实验结果表明,该算法比主成分分析算法和线性鉴别分析算法具有更高的识别率,可以较好地用于人脸识别任务。 Principal component analysis(PCA)and linear discriminant analysis(LDA)are widely used in face recognition technology.However,the computational complexity of PCA is so high that the real-time performance of face recognition cannot meet the requirements.LDA has“small samples”and“edge”problems,which reduces the accuracy of face recognition.In view of the above problems,we propose a method that fuses two-dimensional principal component analysis and improved linear discriminant analysis.The features extracted by 2DPCA are better,faster than PCA,and the computation time is reduced.The improved LDA redefines the dispersion matrix and Fisher criterion between samples,overcomes the problems of the traditional LDA algorithm,retains the most discerning information,and enhances the recognition rate of the algorithm.The experiment shows that the proposed algorithm has a higher recognition rate than the principal component analysis and linear discriminant analysis,which can be better used for face recognition tasks.
作者 房梦玉 马明栋 FANG Meng-yu;MA Ming-dong(School of Telecommunications&Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China;School of Geographical and Biological Information,Nanjing University of Posts and Telecommunications,Nanjing 210003,China)
出处 《计算机技术与发展》 2021年第2期65-69,共5页 Computer Technology and Development
基金 江苏省自然科学基金-青年基金项目(BK20140868)。
关键词 主成分分析 线性鉴别分析 二维主成分分析 FISHER准则 人脸识别 principal component analysis linear discriminant analysis two-dimensional principal component analysis Fisher criterion face recognition
  • 相关文献

参考文献8

二级参考文献42

  • 1杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 2韩争胜,李映,张艳宁.基于LDA算法的人脸识别方法的比较研究[J].微电子学与计算机,2005,22(7):131-133. 被引量:20
  • 3王晓强,刘勇奎.参数曲线的分段步长生成算法[J].计算机应用研究,2006,23(1):227-229. 被引量:2
  • 4张生亮,杨静宇.二维投影与PCA相结合的人脸识别算法[J].计算机工程,2006,32(16):165-166. 被引量:6
  • 5P N Belhumeur, J P Hespanha, D J Kriegman. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. Pattern Analysis and Machine Intelligence,IEEE Transactions on, July 1997, 19(7): 711-720.
  • 6Hua Yu, Jie Yang. A Direct LDA Algorithm for High-Dimensional Data-with Application to Face Reciognition.
  • 7L-Fen Chen, Hong-yuan Mark Liao, Ming-Tat Ko, JaChen Lin, Gwo-Jong Yu. A New LDA-based Face Recognition System which can Solve the Small Sample Size Problem.
  • 8Juwei Lu, Kostantinos N Plataniotis, Anastasios N Venetsanopoulos. Face Recognition Using LDA-Based Algorithms. IEEE Transactions on Neural Networks, January 2003, 14(1).
  • 9Rohit Lotlikar, Ravi Kothari Senior. Fractional-step Dimensionality reduction. IEEE Transaction on Pattern Analysis and Machine Intelligence, June 2000, 22(6).
  • 10边肇祺 张学工.模式识别(第2版)[M].北京:清华大学出版社,1999..

共引文献103

同被引文献58

引证文献9

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部