摘要
本文利用数据挖掘技术,针对铝电解生产过程提出了一种对氟化铝日添加量和日出铝量进行预测的算法。通过搭建LSTM神经网络,将经由随机森林算法选取的强特征子集当日数据作为网络的输入,氟化铝添加量和出铝量第二日数据作为输出进行训练和测试,最后对连续10天的数据进行预测验证,得到氟化铝日添加量和日出铝量的平均绝对误差分别为1.32和25.21,能够满足工业生产要求。
Using data mining technology,this paper puts forward an algorithm to predict the daily amount of aluminum fluoride and the daily amount of aluminum.By building a LSTM neural network,the real-day data of strong feature subsets selected by random forest algorithm are used as the input of the network,and the second day data of aluminum fluoride addition and output are trained and tested.Finally,the average absolute errors of daily addition and sunrise aluminum are 1.32 and 25.21,which can meet the requirements of industrial production.
作者
常家玮
曾水平
CHANG Jia-wei;ZENG Shui-ping(North University of Technology,School of Electrical and Control Engineering,Beijing 100144,China)
出处
《世界有色金属》
2020年第22期216-218,共3页
World Nonferrous Metals
关键词
铝电解
LSTM神经网络
随机森林
氟化铝添加量
出铝量
aluminum electrolysis
LSTM neural network
random forest
addition of aluminum fluoride
output of aluminum