期刊文献+

基于SVM和D-S证据理论的早期溢流智能识别方法 被引量:6

Research on Intelligent Early Kick Identification Method Based on SVM and D-S Evidence Theory
下载PDF
导出
摘要 早期溢流监测是预防井喷事故发生的重要手段。目前的溢流识别方法大多基于单一的监测手段,可靠性不高,现场需要结合多种监测手段对溢流发生进行综合研判。直接应用多种手段监测溢流时,存在由于各种手段监测结果不一致甚至出现矛盾冲突的问题。为此,提出了一种基于支持向量机后验概率模型和D-S证据理论的早期溢监测方法,结合钻井液微流量参数、综合录井参数、井底随钻测量参数对溢流发生进行综合判别;有效解决应用各类监测参数识别溢流时出现溢流识别结果矛盾冲突的问题。采用仿真及现场实测数据进行了溢流识别实验,结果表明,该方法能有效处理多源信息间矛盾冲突,提高溢流监测的可靠性具有较高的现场应用价值。 Early kick detection plays an important role in preventing blowout accident. Most existing kick detection methods rely only on single detection tool,which is limited by drilling conditions and can only produce low reliable results. Therefore,a synthetic identification method by combining multiple detection means to comprehensively determine the occurrence of kick is required. However,the direct application of multiple monitoring tools may produce inconsistent monitoring results. In order to address this problem,an early kick detection method based on support vector machine posterior probability model and D-S evidence theory is proposed,which integrates the drilling fluid,the comprehensive logging parameters and the PWD measurement parameters to identify kick. Meanwhile,it can deal with contradictory or even conflict problems during applying various types of monitoring parameters. Experimental results with both simulated and real data show that the proposed method can effectively deal with the conflicts among multiple monitoring results and thus improve the reliability of kick detection,which behaves potential practical application value.
作者 李玉飞 张博 孙伟峰 LI Yufei;ZHANG Bo;SUN Weifeng(Drilling&Production Engineering Technology Research Institute,CNPC Chuanqing Drilling Engineering Company Limited,Deyang,Sichuan 618300,China;College of Information and Control Engineering,China University of Petroleum,Qingdao,Shandong 266580,China)
出处 《钻采工艺》 CAS 北大核心 2020年第5期27-30,I0002,共5页 Drilling & Production Technology
基金 中国石油天然气集团公司重大科技项目“油气井井喷预防与控制技术研究及应用”(编号:2016D-4601)。
关键词 溢流识别 支持向量机 D-S证据理论 综合判别 kick detection SVM D-S evidence theory Synthetic identification
  • 相关文献

参考文献3

二级参考文献24

  • 1李剑峰,乐光新,尚勇.基于改进型D—S证据理论的决策层融合滤波算法[J].电子学报,2004,32(7):1160-1164. 被引量:23
  • 2李国正 王猛 增华军 译 NelloCristianini JohnShawe-Taylor著.支持向量机导论[M].北京:电子工业出版社,2004..
  • 3Chris Rhodes. Intelligent planning reduces nonproductive drilling times[J]. Oilfield Review,2001,13(2) : 1 -4.
  • 4Shi Yuesheng, Liang Shuyun, Li Hongjie. Application of Artificial Neural Network to Real - Time Condition Moni- toring Control and Usual Trouble Diagnosis during Drilling [ J]. Journal of China University of Geosciences, 1997,8 (2) :154 - 157.
  • 5Perenyi M, Dang T D, Gefferth A, et ak. Identification and Analy- sis of Peer-to-Peer Traffic [J]. Journal of Communications, 2006,1(7) :36-46.
  • 6Moore A,Papagiannaki K. Toward the accurate identification of network applications[C]//Proceedings of the Passive and Active Measurements Workshop. 2005 : 41-54.
  • 7Nguyen T, Armitage G. A survey of techniques for internet traf- fic classification using machine learning[J]. IEEE Communica- tions Surveys, 2008,10(4) : 56-76.
  • 8Liu Chao-bin, Yang Yue-xiang, Tang Chuan. A Classification Method of Unstruetured P2P Multicast Video Streaming Based on SVM[C]//2009 IEEE International Conference on Multime- dia Information Networking and Security(MINF_G2009). 2009:11.
  • 9Silverston T,Fourmaux O. P2P IPTV measurement:a compari- son Study[M]. Preprint, 2006.
  • 10Alessandria E, Gallo M, Leonardi E, et al. P2P-TV Systems un- der adverse network conditions: a measurement study [C]// IEEE Infocom. Riode Janeiro, 2009.

共引文献12

同被引文献90

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部