期刊文献+

Functionalizations of boron nitride nanostructures 被引量:1

原文传递
导出
摘要 Boron nitride(BN) nanomaterials share the same atomic structures as their carbon counterparts, with mechanical and thermal properties second only to carbon counterparts. Especially, the iconicity of B-N bonds results in exceptionally high thermal stability and corrosion resistance, making BN nanomaterials a compelling contender for fabricating devices that can operate under harsh environments. However, all pristine BN nanomaterials are electric insulators and lack semiconductive functionality.How to efficiently regulate the electronic properties of BN nanomaterials has impeded the way of delivering their potential into applications. Here, we report an overview of key progress in functionalizing BN nanostructures by means of multi-physical-field coupling at nanoscale. In particular, we present how the chemical doping, electric fields, elastic strains and interfaces can modify the band structures and hence lead to narrowed bandgap and even magnetism in various BN nanostructures. We also discuss the effect of these modulation methods on charge carrier motility as well as potential challenges of their experimental implementation. Without applied doping, strain and electric field, employing inherent BN polarity to form electrically polarized interfaces is proposed to functionalize BN nanostructures towards controlled electronic properties combined with high carrier motility. We finally discuss recent progress of experimental synthesis of quality h-BN samples in large area.
出处 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第1期1-10,共10页 中国科学(技术科学英文版)
基金 supported by the National Natural Science Foundation of China (Grant Nos. 11772153 and 11402115) the NSF of Jiangsu Province(Grant No. BK20190018) the Fundamental Research Funds for the Central Universities (Grant No. NE2018002) a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions。
  • 相关文献

参考文献2

二级参考文献32

  • 1Kroto H W, Heath J R, O'Brien S C, Curl R F and Smalley R E 1985 Nature 318 162.
  • 2Tang C M, Zhu W H and Deng K M 2009 Chin. Phys. Lett. 26 096101.
  • 3Yu L M, Shi G S, Wang Z G, Fu J G and Lu Z P 2009 Chin. Phys. Lett. 26 086804.
  • 4Iijima S and Ichibashi T 1993 Nature 363 603.
  • 5Xiao Y, Yan X H and Ding J W 2007 Chin. Phys. Lett. 24 3506.
  • 6Xu M H, Qi X S, Zhong W, Ye X J, Deng Y, Au C T, Jin C Q, Yang Z Xand DuYW2009 Chin. Phys. Lett. 26 116103.
  • 7Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666.
  • 8Huang Q S, Guo L W, Wang W J, Wang G, Wang W Y, Jia Y U, Lin J J, Li K and Chen X L 2010 Chin. Phys. Lett. 27 046803.
  • 9Lu H Y and Wang Q H 2008 Chin. Phys. Lett. 25 3746.
  • 10Chen Y P, Xie Y E, Sun L Z and Zhong J X 2008 Appl. Phys. Left. 93 092104.

共引文献10

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部