期刊文献+

Effect of P fertilizer reduction regime on soil Olsen-P, root Fe-plaque P, and rice P uptake in rice-wheat rotation paddy fields

原文传递
导出
摘要 In agricultural systems, it is vital to use limited yet optimal phosphorus(P) resources, because excessive P fertilizer application leads to the accumulation of P in soil, increasing the risk of environmental pollution and causing the waste and exhaustion of P resources. In a rice-wheat rotation system, omitting P fertilizer application in the rice-growing season is a good alternative;however, how this P fertilization reduction influences changes in P in the soil-root-aboveground system is unclear. In this study, after a seven-year rice-wheat rotation at the Yixing(YX) and Changshu(CS) sampling sites, China, compared with P fertilization in rice-and wheat-growing seasons(PR+W), reduced P fertilization(no P fertilizer application in either season, P0;P fertilization only in wheat-growing seasons, PW;and P fertilization only in rice-growing seasons, PR) did not result in substantial variation in crop biomass. The PW treatment did not reduce crop total P, root iron(Fe)-plaque P, and soil Olsen-P at three stages of rice growth(seedling, booting, and harvesting stages) at the YX and CS sites. In contrast, concentrations of soil Olsen-P, aboveground crop total P, and root Fe-plaque P decreased in the P0 treatment by 45.8%–81.0%,24.6%–30.9%, and 45.6%–73.4%, respectively. In addition, a significant negative correlation was observed between the root Fe-plaque P and crop biomass at the two sites. Significant positive correlations were also observed between root Fe-plaque P and root total P, crop total P, and soil Olsen-P. In addition, the results of a redundancy analysis revealed that soil alkaline phosphatase(ALP) played a major role in the supply of P in soil, and was closely associated with root Fe-plaque P. The results of this study will enhance the understanding of the changes in P in the soil-root-aboveground system, particularly under P fertilizer reduction regimes.
出处 《Pedosphere》 SCIE CAS CSCD 2021年第1期94-102,共9页 土壤圈(英文版)
基金 funded by The National Key Research and Development Program of China (No. 2017YFD0800103) the National Natural Science Foundation of China (No. 41671304) the Key Projects in the National “948” Program during the Twelfth Five-Year Plan Period (No. 2011-G30)。
  • 相关文献

参考文献4

二级参考文献58

共引文献128

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部