期刊文献+

基于刀具跳动的非可展直纹面侧铣加工刀位优化方法

Cutter Position Optimization Method Based on Tool Runout for Flank Milling of Non-Developable Ruled Surface
下载PDF
导出
摘要 在非可展直纹面的侧铣加工过程中,曲面的非可展的特性会影响加工后零件的表面质量。尤其在铣削软材料工件非可展直纹面时,刀具跳动是零件表面加工误差增大的新因素。针对这一问题,课题组提出了一种基于刀具跳动的非可展直纹面侧铣加工刀位优化方法。首先构建了刀具跳动下的误差度量函数;随后通过测量法得到了刀具跳动后的实际回转轮廓半径;最后在考虑刀具跳动的情况下通过单点摆动法对初始刀位进一步优化。仿真实验结果表明:在将刀具跳动因素加入非可展直纹面的误差优化模型中后,加工平均误差减小了25%,过切率减小了18.5%。该研究方法有效提高了零件的表面质量。 In the flank milling process of non-developable ruled surface,the non-developable characteristic of curved surface will affect the surface quality of the processed parts.The tool run-out is a new factor that increases the machining error on the surface of the parts,especially in the milling process of soft materials.To solve this problem,a tool position optimization method based on tool run-out for non-developable ruled surface milling was proposed.Firstly,the error measure function under the tool jumping was constructed.Then the actual radius of the tool’s rotation contour was obtained by measuring.Finally,the initial tool position was optimized by single point swing method considering tool runout.The simulation results show that when the tool run-out factor is added into the error optimization model of nondevelopable ruled surface,the average machining error is reduced by 25%and the overcutting rate by 18.5%,which effectively improves the surface quality of the parts.
作者 孔森 张立强 冯倩倩 邵云龙 KONG Sen;ZHANG Liqiang;FENG Qianqian;SHAO Yunlong(School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai,201620,China)
出处 《轻工机械》 CAS 2021年第1期7-11,共5页 Light Industry Machinery
基金 国家自然科学基金资助项目(51775328)。
关键词 铣削加工 侧铣 非可展直纹面 刀具跳动 回转轮廓半径 milling process flank milling non-developable ruled surface tool run-out rotation contour radius
  • 相关文献

参考文献2

二级参考文献20

  • 1Li C G, Bedi S, Mann S. Flank miltable surface design with conical and barrel tools [J]. Computer-Aided Design & Applications, 2008, 5(1/4): 461-470.
  • 2Liu X W. Five-axis NC cylindrical milling of sculptured surfaces [J]. Computer-Aided Design, 1995, 27(12): 887-894.
  • 3Redonnet J M, Rubio W, Dessein G. Side milling of ruled surfaces: optimum positioning of the milling cutter and calculation of interference [J]. The International Journal of Advanced Manufacturing Technology, 1998, 14(7): 459-465.
  • 4Bedi S, Mann S, Menzel C. Flank milling with fiat end milling cutters [J]. Computer-Aided Design, 2003, 35(3): 293-300.
  • 5Li C G, Bedi S, Mann S. Flank milling of ruled surface with conical tools-an optimization approach [J]. The International Journal of Advanced Manufacturing Technology, 2006, 29(11-12): 1115-1124.
  • 6Chu C H, Huang W N, Hsu Y Y. Machining accuracy improvement in five-axis flank milling of ruled surfaces [J]. International Journal of Machine Tools & Manufacture, 2008, 48: 914-921.
  • 7Gong H, Cao L X, Liu J. Improved positioning of cylindrical cutter for flank milling ruled surfaces [J]. Computer-Aided Design, 2005, 37: 1205-1213.
  • 8席光,吴广宽,郑健生.基于半径和角偏置的直纹面五坐标加工刀位生成算法[J].机械工程学报,2008,44(4):92-96. 被引量:10
  • 9朱利民,郑刚,丁汉.圆锥刀五轴侧铣加工刀具路径整体优化原理与方法[J].机械工程学报,2010,46(23):174-179. 被引量:15
  • 10朱立达,王宛山,李鹤,于天彪.正交车铣偏心加工三维颤振稳定性的研究[J].机械工程学报,2011,47(23):186-192. 被引量:13

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部