期刊文献+

基于多能工配置的巡回式赛汝订单调度优化决策 被引量:4

Divisional Seru order scheduling optimization based on multi-skilled worker assignment
下载PDF
导出
摘要 多能工配置是决定赛汝生产系统效率及生产能力的关键因素,应与赛汝订单调度协同决策。该文以最小化最大完工时间(Makespan)及最小化工人的空闲时间为目标,研究了面向巡回式赛汝生产的基于多能工配置的订单调度问题。鉴于所研究问题的复杂性,该文将模拟退火(Simulated annealing,SA)算法与第二代非支配排序遗传算法(Non-dominated sorting genetic algorithm II,NSGA-II)相结合形成了一种改进型多目标混合遗传算法,并将其用于大小算例的测试,得到了各自的目标函数值与运行时间。结果表明:该算法相较之前的研究更高效,且具有良好的可扩展性。 The assignment of the multi-skilled workers is the key factor to determine the efficiency and productivity of Seru production system.So,the assignment of multi-skilled workers should be decided together with order scheduling.This paper focuses on the order acceptance problem with multi-skilled worker assignment in the divisional Seru production system.Then,a bi-objective programming model with two objectives to minimize makespan and minimize total idle time of all multi-skilled workers is established.Since this is a computationally intractable problem,an improved multi-objective hybrid genetic algorithm is proposed in this paper by combining simulated annealing algorithm(SA)with the non-dominated sorting genetic algorithm II(NSGA-II).And it is used in the test of large and small examples,and the objective function and running time are obtained.The example results show that the proposed algorithm is more effective and has good scalability.
作者 张哲 王丽丽 殷勇 Zhang Zhe;Wang Lili;Yin Yong(School of Economics and Management,Nanjing University of Science and Technology,Nanjing 210094,China;Graduate School of Business,Doshisha University,Karasuma-Imadegawa,Kamigyo-ku,Kyoto,602-8580,Japan)
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2021年第1期98-104,共7页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(71401075,71801129) 中央高校基本科研业务费专项资金(30920010021)。
关键词 赛汝生产 订单调度 多能工配置 第二代非支配排序遗传算法 模拟退火算法 多目标 遗传算法 Seru production order scheduling multi-skilled worker assignment non-dominated sorting genetic algorithm II simulated annealing algorithm multi-objective genetic algorithm
  • 相关文献

参考文献3

二级参考文献36

  • 1唐恒永,赵琨.带有资源消耗的加权总完工时间单机排序问题[J].系统工程与电子技术,2004,26(11):1601-1603. 被引量:3
  • 2王跃宣,刘连臣,牟盛静,吴澄.处理带约束的多目标优化进化算法[J].清华大学学报(自然科学版),2005,45(1):103-106. 被引量:55
  • 3崔逊学.多目标进化算法及其应用[M].北京:国防工业出版社,2008:4-12.
  • 4张永,吴晓蓓,徐志良,黄成,胡维礼.基于Pareto多目标遗传算法的模糊系统设计[J].南京理工大学学报,2007,31(4):430-434. 被引量:4
  • 5Srinivas N, Deb K. Multi-objective optimization using non-dominated sorting in genetic agorithms [J].Evolutionary Computation, 1994,2:221-248.
  • 6Deb K, Agrawl S, Pratap A, et al. A fast elitist non- dominated sorting genetic algorithm for multi-objective optimization:NSGA II [J]. Lecture Notes in ComputerScience ,2000,1917( 1 ) ,849-858.
  • 7Deb K, Pratap A, Meyarivan T. Constrained test problems for multi-objective evolutionary optimization [R]. KanGAL Report, Kanpur: Indian Institute of Technology, 2002.
  • 8Shabtay D, Steiner G. A survey of scheduling with controllable processing times [ J ]. Discrete Applied Mathematics, 2007, 155(13) : 1643-1666.
  • 9Akturk M S, Atamturk A, Gurel S. Parallel machine match-up scheduling with manufacturing cost considerations[ J]. Journal of Scheduling, 2010, 13 ( 1 ) : 95-110.
  • 10Vickson R G. Choosing the job sequence and processing times to minimize total processing plus flow cost on a single machine [ J ]. Operations Research, 1980, 28 ( 5 ) : 1155-1167.

共引文献27

同被引文献38

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部