期刊文献+

格基约化算法及其在密码分析中的应用综述

Review of Lattice Reduction Algorithms and Their Applications in Cryptanalysis
下载PDF
导出
摘要 格基约化算法是密码分析中的一个重要工具,在RSA、DSA和背包体制等经典公钥密码算法的安全性分析和一些新型格密码体制的安全参数评估中发挥着重要作用。首先,给出格的一些基本概念并介绍格中一些困难问题;其次,归纳整理已有格基约化算法并总结梳理格基约化算法在密码分析中的应用;最后,对格基约化算法研究重点和趋势进行了总结和展望。 Lattice reduction algorithm is an important tool for cryptanalysis,which plays an important role in analyzing classic cryptosystems such as RSA,DSA and knapsack cryptosystems,and also possesses key position in the security estimation of many lattice-based cryptosystems.In this paper,we first recall the basic mathematical definitions related with lattice,and introduce basic hard problems of lattice.Then we categorize various lattice reduction algorithms and summarize their applications in cryptanalysis.Finally,we present several prospective directions worthy of future research.
作者 郑永辉 刘永杰 栾鸾 ZHENG Yonghui;LIU Yongjie;LUAN Luan(Henan Key Laboratory of Network Cryptography, Zhengzhou 450001, China;Information Engineering University, Zhengzhou 450001, China;Unit 69012, Urumqi 830031, China)
出处 《信息工程大学学报》 2020年第6期719-727,734,共10页 Journal of Information Engineering University
基金 河南省高等学校重点科研项目(21A413001) 河南省科技攻关项目(212102310991)。
关键词 格基约化 最短向量问题 格密码 Gram-Schmidt正交化 正交投影 lattice reduction the shortest vector problem lattice-based cryptography Gram-Schmidt orthogonalization orthogonalized projection
  • 相关文献

参考文献2

二级参考文献10

  • 1Oded Regev.On lattices, learning with errors, random linear codes, and cryptography[J].Journal of the ACM (JACM).2009(6)
  • 2Johannes Bl?mer,Stefanie Naewe.Sampling methods for shortest vectors, closest vectors and successive minima[J].Theoretical Computer Science.2009(18)
  • 3Phong Q. Nguyen,Thomas Vidick.Sieve algorithms for the shortest vector problem are practical[J].Journal of Mathematical Cryptology.2008(2)
  • 4Jean-Sebastien Coron,Alexander May.Deterministic Polynomial-Time Equivalence of Computing the RSA Secret Key and Factoring[J].Journal of Cryptology.2007(1)
  • 5Dorit Aharonov,Oded Regev.Lattice problems in NP ∩ coNP[J].Journal of the ACM (JACM).2005(5)
  • 6Subhash Khot.Hardness of approximating the shortest vector problem in lattices[J].Journal of the ACM (JACM).2005(5)
  • 7Phong Q. Nguyen,Igor E. Shparlinski.The Insecurity of the Elliptic Curve Digital Signature Algorithm with Partially Known Nonces[J].Designs Codes and Cryptography.2003(2)
  • 8I. Dinur,G. Kindler,R. Raz,S. Safra.Approximating CVP to Within Almost-Polynomial Factors is NP-Hard[J].COMBINATORICA.2003(2)
  • 9Irit Dinur.Approximating SVP ∞ to within almost-polynomial factors is NP-hard[J].Theoretical Computer Science.2002(1)
  • 10Jin-Yi Cai.A new transference theorem in the geometry of numbers and new bounds for Ajtai’s connection factor[J].Discrete Applied Mathematics.2002(1)

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部