期刊文献+

Bert-BLSTM-CRF模型的中文命名实体识别 被引量:8

Chinese Named Entity Recognition Based on Bert-BLSTM-CRF Model
下载PDF
导出
摘要 中文命名实体识别方法中采用较多的是神经网络模型,但该模型在训练过程中存在字向量表征过于单一的问题,无法很好地处理字的多义性特征。因此,提出一种基于Bert-BLSTM-CRF模型的中文命名实体识别研究方法,使用Bert预训练语言模型,根据字的上下文信息来丰富字的语义向量,将输出的字向量序列作为输入送入BLSTM-CRF模型进行训练。实验结果表明,此方法在中文命名实体识别任务上其准确率、召回率和F1值分别取得了94.80%、95.44%和95.12%的成绩,相较于其他传统方法,效果显著。 Most of the Chinese named entity recognition method are based on neural network model,but the process has a problem that the vector representation is too singular during the training process,and the ambiguity of the word cannot be handled well.Therefore,a method of Chinese named entity recognition based on Bert-BLSTM-CRF model is proposed.According to the context information of the word,the Bert pretraining language model is used to enrich the semantic vector of words,and the output word vector sequence is sent as input to BLSTM-CRF model for training.The experimental results show that the accuracy,recall rate and F1 value of this method in the Chinese named entity recognition task are 94.80%,95.44%and 95.12%,respectively.The effect is remarkable compared with other traditional methods.
作者 王远志 曹子莹 WANG Yuanzhi;CAO Ziying(School of Computer&Information,Anqing Normal University,Anqing 246133,China)
出处 《安庆师范大学学报(自然科学版)》 2021年第1期59-65,共7页 Journal of Anqing Normal University(Natural Science Edition)
基金 安徽省教育厅重点项目(KJ2018A0359) 国家重点研发计划项目。
关键词 中文实体识别 双向LSTM 条件随机场 Chinese named entity recognition bidirectional long short-term memory conditional random field
  • 相关文献

参考文献4

二级参考文献32

共引文献164

同被引文献96

引证文献8

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部