摘要
为进一步提高文本情感倾向性分类效果,提出基于文本特征和语言知识融合的卷积神经网络模型MI-CNN。使用Word2Vec表示词语信息,将词性和情感词语等语言知识嵌入词向量中,将文本特征和语言知识融合到情感倾向性分类模型,经过参数优化提升文本情感倾向性分类模型的准确率。在数据集上进行实验,结果表明所提出的模型准确率达到93.0%,比文献中的基准模型取得了更好的分类效果。
In order to improve the performance of sentiment classification model,a convolutional neural network model MI-CNN based on text feature and language knowledge fusion is proposed in this paper.Firstly,Word2Vec is used to represent word information,and linguistic knowledge such as lexical and emotional words is embedded into word vector.Then text features and sentiment knowledge are fused into sentiment classification model.The accuracy is improved through parameter optimization.The result of experiments show that the proposed model achieves better performance than the benchmark model in literature,and the accuracy reach 93.0%.
作者
杨善良
YANG Shanliang(School of Computer Science and Technology,Shandong University of Technology,Zibo 255049,China)
出处
《山东理工大学学报(自然科学版)》
CAS
2021年第3期24-29,36,共7页
Journal of Shandong University of Technology:Natural Science Edition
基金
山东理工大学博士科研启动项目(419038)。
关键词
情感分类
语言知识
特征融合
卷积神经网络
sentiment classification
linguistic knowledge
feature fusion
convolutional neural network