期刊文献+

基于文本特征和语言知识的神经网络情感分类 被引量:3

Neural network sentiment classification based on text features and linguistic knowledge
下载PDF
导出
摘要 为进一步提高文本情感倾向性分类效果,提出基于文本特征和语言知识融合的卷积神经网络模型MI-CNN。使用Word2Vec表示词语信息,将词性和情感词语等语言知识嵌入词向量中,将文本特征和语言知识融合到情感倾向性分类模型,经过参数优化提升文本情感倾向性分类模型的准确率。在数据集上进行实验,结果表明所提出的模型准确率达到93.0%,比文献中的基准模型取得了更好的分类效果。 In order to improve the performance of sentiment classification model,a convolutional neural network model MI-CNN based on text feature and language knowledge fusion is proposed in this paper.Firstly,Word2Vec is used to represent word information,and linguistic knowledge such as lexical and emotional words is embedded into word vector.Then text features and sentiment knowledge are fused into sentiment classification model.The accuracy is improved through parameter optimization.The result of experiments show that the proposed model achieves better performance than the benchmark model in literature,and the accuracy reach 93.0%.
作者 杨善良 YANG Shanliang(School of Computer Science and Technology,Shandong University of Technology,Zibo 255049,China)
出处 《山东理工大学学报(自然科学版)》 CAS 2021年第3期24-29,36,共7页 Journal of Shandong University of Technology:Natural Science Edition
基金 山东理工大学博士科研启动项目(419038)。
关键词 情感分类 语言知识 特征融合 卷积神经网络 sentiment classification linguistic knowledge feature fusion convolutional neural network
  • 相关文献

参考文献10

二级参考文献49

  • 1唐慧丰,谭松波,程学旗.基于监督学习的中文情感分类技术比较研究[J].中文信息学报,2007,21(6):88-94. 被引量:136
  • 2徐军,丁宇新,王晓龙.使用机器学习方法进行新闻的情感自动分类[J].中文信息学报,2007,21(6):95-100. 被引量:107
  • 3Subasic P, Huettner A. Affect analysis of text using fuzzy se- mantic typing[J]. IEEE Transactions on Fuzzy Systems, 2001,9 (4) :483-496.
  • 4Ramos J. Using tf-idf to determine word relevance in document queries[C] // Proceedings of the First Instructional Conference on Machine Learning. 2003.
  • 5Dennis S, Landauer T, Kintsch W, et al. Introduction to latent semantic analysis[C]//Slides from the tutorial given at the 25th Annual Meeting of the Cognitive Science Society. Boston, 2003.
  • 6Landauer T K. Latent semantic analysis [M]// Encyclopedia of Cognitive Science. Nature Pub Group, 2006.
  • 7Chang C C, Lin C J. LIBSVM.-a library for support vector ma- chines[J]. ACM Transactions on Intelligent Systems and Tech- nology (TIST) ,2011,2(3) :27.
  • 8Kalman D. A singularly valuable decomposition: the SVD of a matrix[J]. College Math Journal, 1996.
  • 9Golub G H, Van Loan C F. Matrix computations [M]. Balti- more, MD, USA: Johns Hopkins University Press, 1996: 374- 426.
  • 10刘群,李素建.基于《知网》的词汇语义相似度的计算.第三届汉语词汇语义学研讨会,台北,2002.

共引文献344

同被引文献25

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部