期刊文献+

求解Robin边值下Poisson问题的修正弱有限元方法

A Modified Weak Galerkin Finite Element Method for Poisson Equation with Robin Boundary Conditions
下载PDF
导出
摘要 基于Robin边值条件下的Poisson方程,运用修正弱有限元方法,通过建立u的弱函数空间、相应的数值格式以及误差方程,进而分析了其u h与u之间的H 1误差和L 2误差,都达到了最优阶. The modified weak Galerkin finite element method is used to solve Poisson equation with the Robin boundary conditions.Corresponding numerical scheme and error equation are established in the weak function space of u.we obtained the Optimal order error estimates of u h and u in H 1 and L 2 norm.
作者 张秀锋 焦媛 ZHANG Xiufeng;JIAO Yuan(Department of Mathematics,Changzhi University,Changzhi 046011,China)
机构地区 长治学院数学系
出处 《太原师范学院学报(自然科学版)》 2021年第1期23-29,共7页 Journal of Taiyuan Normal University:Natural Science Edition
基金 2020年长治学院校级课题(XJ2020001601).
关键词 POISSON方程 修正弱有限元方法 弱梯度 Poisson equation modified weak finite element methods weak gradient
  • 相关文献

参考文献1

二级参考文献23

  • 1Brenner S, Scott R. The Mathematical Theory of Finite Element Mathods. New York: Springer-Verlag, 1994.
  • 2Ciarlet P G. The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland, 1978.
  • 3Wang J, Ye X. A weak Galerkin finite element method for second-order elliptic problems. J Comput Appl Math, 2013, 241: 103-115.
  • 4Wang J, Ye X. A weak Galerkin mixed finite element method for second-order elliptic problems. Math Comp, 2014, 83: 2101-2126.
  • 5Wang J, Ye X. A weak Galerkin finite element method for the Stokes equations. Adv Comput Math, in press, 2015.
  • 6Mu L, Wang J, Ye X, et al. A weak Galerkin finite element method for the Maxwell equations. J Sci Comput, doi: 10.1007/s10915-014-9964-4, 2014.
  • 7Mu L, Wang J, Ye X. Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes. Numer Methods Partial Differential Equations, 2014, 30: 1003-1029.
  • 8Wang C, Wang J. An efficient numerical scheme for the biharmonic equation by weak Galerkin finite element methods on polygonal or polyhedral meshes. Comput Math Appl, 2014, 68: 2314-2330.
  • 9Mu L, Wang J, Ye X. Weak Galerkin finite element methods on polytopal meshes. Int J Numer Anal Model, 2015, 12: 31-53.
  • 10Mu L, Wang J, Wang Y, et al. A computational study of the weak Galerkin method for second order elliptic quations. Numer Algorithms, 2013, 63: 753-777.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部