摘要
从两方面分析中立型双曲泛函微分方程边值问题的可解性,一方面根据该方程问题边值问题的振动准则,分别从超线性和次线性两种情形,分析该方程边值问题的可解性;另一方面在去除振动准则的情况下,通过Krasnoselskii锥拉伸锥压缩不动点定理及其他分析方法研究该方程边值问题的周期正解.
The solvability of the boundary value problem of neutral hyperbolic functional differential equation is analyzed from two aspects.On the one hand,according to the oscillation criterion of the boundary value problem,the solvability of the boundary value problem of the neutral hyperbolic functional differential equation is analyzed from the superlinear and sublinear cases respectively;On the other hand,the positive periodic solution of the boundary value problem is studied by Krasnoselskii fixed point theorem and other analytical methods.
作者
徐校会
XU Xiaohui(Department of Education,Chuzhou City Vocation College,Chuzhou 239000,China)
出处
《太原师范学院学报(自然科学版)》
2021年第1期30-36,共7页
Journal of Taiyuan Normal University:Natural Science Edition
基金
高职院校创新创业课程体系构建与实践(2019jyxm0640).
关键词
中立型
双曲型
泛函微分方程
边值问题
可解性
neutral type
hyperbolic type
functional differential equation
boundary value problem
solvability