期刊文献+

基于孪生网络与证据推理规则的视频目标跟踪

Visual Tracking Based on Siamese Networks and Evidential Reasoning Rule
下载PDF
导出
摘要 卷积神经网络(Convolutional Neural Networks,CNN)已经作为特征提取的方法被广泛用于视频目标跟踪。由于CNN每层卷积特征在给定的视频序列上具有不同响应以及随着层数的增加,提取的特征更为高级和抽象,所以仅使用最高层的卷积特征用于视频跟踪准确率可能大大降低。为解决这一问题,文章在孪生网络的基础上提出基于证据推理规则(Evidential Reasoning Rule,ER Rule)加权位置信息组合方法。描述了基于ER规则组合位置信息的过程,然后构建了位置信息组合模型。通过实际跟踪实验验证了模型的实际效果。 Convolutional Neural Networks(CNN) are widely used in visual tracking fields represented by computer vision and natural language processing. Since the convolutional features of each layer of CNN have different responses on a given video sequence. As the number of layers increases, the layer features are more advanced and abstract. Therefore, only using the highest layer of convolutional features for visual tracking,the accuracy may be reduced. To solve this problem, This paper proposes a weighted location information combination method based on Evidential Reasoning Rule(ER Rule) and the Siamese network.Describes the process of combining location information based on Evidential Reasoning Rule, then built the location information combination model.
作者 蔡明胜 段喜萍 Cai Mingsheng;Duan Xiping(College of Computer Science and Information Engineering,Harbin Normal University,Harbin 150500,China)
出处 《信息通信》 2020年第12期36-38,43,共4页 Information & Communications
基金 哈尔滨师范大学研究生创新(HSDSSCX2020-59)资助。
关键词 证据推理规则(ER Rule) 卷积神经网络(CNN) 卷积层特征 目标跟踪 孪生网络 Evidential Reasoning Rule(ER Rule) Convolutional Neural Networks(CNN) Convolutional features Visual Tracking Siamese Network
  • 相关文献

参考文献2

二级参考文献24

  • 1黄静,董秀良.证券分析师业绩预测和投资评级准确性实证分析[J].数理统计与管理,2006,25(6):742-749. 被引量:14
  • 2文成林,徐晓滨.多源不确定信息融合理论及应用-故障诊断与可靠性评估[M].北京:科学出版社,2012:41-86.
  • 3OUKHELLOU L, DEBIOLLES A, DENOEUX T, et ;d. Fault diag- nosis in railway track circuits using Dempster-Shafer classifier fu- sion [J]. Engineering Applications of Artificial Intelligence, 2010, 23(1): 117 - 128.
  • 4XU X, ZHOU Z, WEN C L. Data fusion algorithm of l~tult diagnosis considering sensor measurement uncertainty [J]. lnten*ational Jour- nal on Smart Sensing and Intelligent System, 2013, 6(1 ): 171 - 190.
  • 5SHAFER G. A Mathematical Theory of Evidence [M]. Princeton, NJ, USA: Princeton University Press, 1976.
  • 6YANG J B, XU D L. Evidence reasoning rule for evidence combina- tion [J]. Artificiallntelligence, 2013, 205(12): 1 -29.
  • 7SIX S, HU C H, YANG J B, et al. On the dynamic evidential rea- soning algorithm for fault prediction [J]. Expert Systems with Appli- cations, 2011, 38(5): 5061 - 5081.
  • 8KONG G L, XU D L, YANG J B, et al. Combined medical quality as- sessment using the evidential reasoning approach [J]. Expert Systems with Applications, 2015, 42(13): 5522 - 5530.
  • 9YANG G L, YANG J B, LIU W B, et al. Cross-efficiency aggregation in DEA models using the evidential-reasoning approach [J]. Euro- pean Journal of Operational Research, 2013, 231(2): 393 - 404.
  • 10NGAN S C. Evidential Reasoning approach for multiple-criteria de- cision making: a simulation-based formulation [J]. Expert Systems with Applications, 2015, 42(9): 4381 - 4396.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部