期刊文献+

一种TV模型下基于ADMM的加速算法 被引量:1

An accelerating algorithm based on ADMM under TV model
下载PDF
导出
摘要 如何利用不充分的投影数据进行精确的图像重建是当前电子计算机断层扫描(Computed Tomography,CT)领域的研究热点,受辐射剂量、人体自身条件、重建时间等诸多因素的限制,投影数据不会总是完整的,而医学采样过程中,如果能减少采样数目,无疑大大减少了X射线对病患和医生的伤害,随着压缩感知(Compressed sensing,CS)理论的提出,稀疏角度重建已经得到了较为广泛的应用。全变分(Total Variation,TV)算法是稀疏角度重建的一种有效方法,文章在TV算法和ADMM算法的基础上,提出了一种新的加速收敛算法,该算法先进行ADMM-TV算法迭代,然后在每轮迭代后对图像进行调整,有效加快收敛速度。相关的实验结果表明,该加速算法能够在相同的迭代次数下获得精确度更高的图像,在加速收敛方面效果良好。 Now,the accurate image reconstruction from few-view projections is a hot point in the study of Computed Tomography(CT).The projections is not always full caused of the limit of many factors,such as radiation dose, the body’s own condition s and so on.if we can reduce the number of sampling in medicine, there is no doubt that it will greatly reduces the injury of Xray to the patient and doctor.with the propose in Compressed sensing,the sparse optimization has recently been wide applied.Total Variation(TV) algorithm is an effective way to sparse reconstruction, based on che TV algorithm and ADMM algorithm,a new accelerated convergence algorithm is proposed, the algorithm firstly iterates the ADMM-TV algorithm, and then adjusts the image after each iteration to accelerate the convergence speed effectively.The experimental results show that the algorithm can obtain more accurate images with the same number of iterations, and is effective in accelerating convergence.
作者 李欣 Li Xin(shanxi international business vocational college,Tai yuan 030031,China)
出处 《信息通信》 2020年第12期60-62,67,共4页 Information & Communications
关键词 CT图像重建算法 压缩感知 稀疏角度重建 TV算法 ADMM算法 CT image reconstruction algorithms compressed sensing sparse optimization total-variation minimization Alternating Direction Method of Multipliers algorithms
  • 相关文献

参考文献3

二级参考文献24

  • 1Ha T,Tinnefeld P. Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging[J].Annual Review of Physical Chemistry,2012.595-617.
  • 2Cho TS,Zimick CL,Joshi N. Image restoration by matching gradient distributions[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,(04):683-694.
  • 3Lee Chinfeng,Huang Yulin. An efficient image interpolation increasing payload in reversible data hiding[J].Expert Systems With Applications,2012,(08):6712-6719.
  • 4Cordero-Grande L,Vegas-Sanchez-Ferrero G,Casaseca-de-laHiguera P. A Markov random field approach for topology-preserving registration:Application to object-based tomographic image interpolation[J].IEEE Transactions on Image Processing,2012,(04):2047-2061.
  • 5Glasner D,Bagon S,Irani M. Super-resolution from a single image[A].2009.349-356.
  • 6Yang J,Wright J,Huang T. Image super-resolution as sparse representation of raw image patches[A].2008.1-8.
  • 7Modgil D,Treeby BE,La Rivière PJ. Photoacoustic image reconstruction in an attenuating medium using singular-value decomposition[J].Journal of Biomedical Optics,2012,(06):0612041-0612048.
  • 8Yang Jianchao,Wright J,Huang TS. Image super-resolution via sparse representation[J].IEEE Transactions on Image Processing,2010,(11):2861-2873.
  • 9Lee H,Battle A,Raina R. Efficient sparse coding algorithms[J].Advances in Neural Information Processing Systems,2007.801-808.
  • 10Zeyde R,Elad M,Protter M. On single image scale-up using sparse-representations[A].Berlin:Springer Berlin Heidelberg,2012.711-730.

共引文献9

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部