期刊文献+

新奇检测综述 被引量:2

Review of Novelty Detection
下载PDF
导出
摘要 能够对异常信息进行检测是智能控制系统的基础能力,新奇检测是一类特殊的异常检测方法,其充分利用了正常数据来构建模型,在诸多智能系统中发挥着重要作用。该领域的综述,能够方便科研人员快速了解新奇检测领域的发展情况,找到适合自己的方法进行应用研究。根据新奇检测方法的基本原理,从基于距离、基于概率、基于域和基于重构四个方面进行了阐述。此外,还介绍了各方法的具体应用以及在经典数据集上的性能表现,并在最后进行了总结分析。研究结果表明,新奇检测方法在工业制造、网络安全、医疗等领域得到了较多应用,具有较好的适应性和广阔的应用前景。 It is a basic ability for intelligent control system to detect abnormal data.Novelty detection is a special kind of anomaly detection,which makes full use of the normal data to build a model,and plays an important role in many intelligent systems.The review of this field can facilitate researchers to quickly understand the recent developments of novelty detection field to find suitable methods for their application research.According to the basic principle of novelty detection method,this paper gives an explication from four aspects:distance-based,probability-based,domain-based and reconstructionbased.Moreover,this paper introduces specific application of each method and the performance on classical datasets,what’s more,it makes a summary analysis in the end.The research results show that the novelty detection methods have been widely used in industrial manufacturing,network security,medical and other fields,showing good adaptability and broad application prospects.
作者 雷恒林 古兰拜尔·吐尔洪 买日旦·吾守尔 张东梅 LEI Henglin;Gulanbaier Tuerhong;Mairidan Wushouer;ZHANG Dongmei(School of Information Science and Engineering,Xinjiang University,Urumqi 830046,China)
出处 《计算机工程与应用》 CSCD 北大核心 2021年第5期47-55,共9页 Computer Engineering and Applications
基金 教育厅高校科研青年项目(61021800032,61021211418) 自治区高层次创新人才项目(100400016,042419006) 新疆大学博士启动基金(620312308,620312310)。
关键词 新奇检测 K最近邻(KNN)算法 高斯混合模型 一类支持向量机(OCSVM)算法 神经网络 novelty detection K-Nearest Neighbor(KNN)algorithm Gaussian mixture model One Class Support Vector Machine(OCSVM)algorithm neural network
  • 相关文献

参考文献6

二级参考文献66

  • 1蒲春,孙政顺,赵世敏.Matlab神经网络工具箱BP算法比较[J].计算机仿真,2006,23(5):142-144. 被引量:68
  • 2MARKOU M, SINGH S. Novelty detection: a review, part 1 : statisti- cal approaches[ J]. Signal Processing ,2003,83(12) :2481-2497.
  • 3PEKALSKA E, TAX D M, DUIN R P W. One-class LP classifier for dissimilarity representations [ C ]//Advances in Neural Information Processing Systems 12. Canada : MIT Press, 2002:761 - 768.
  • 4CAMPBELL C, BENNETI" K P. A linear programming approach to novelty detection [ C ]//Advances in Neural Information Processing Systems 12. Cambridge, MA : MIT Press, 2000:395-401.
  • 5TAX D M J, DUIN R P W. Support vector data description[J]. Ma- chine Learning,2004, 54( 1 ) :45-66.
  • 6ROBERTS S, TARASSENKO L. A probabilistic resource allocation network for novelty detection [ J ]. Neural Computation, 1994, 6 (2) :270-284.
  • 7TOWEL G G. Local expert autoassociators for anomaly detection [C]//Proc of the 17th International Conference on Machine Lear- ning. San Francisco, CA : Morgan Kaufmann,2000 : 1023-1030.
  • 8STEINWART I, HUSH D, SCOVEL C. A classification framework for anomaly detection [ J ]. Machine Learning Ressareh, 2005,6 (1) :211-232.
  • 9SCOTT C D, NOWAK R D. Learning minimum volume sets [ J ]. Machine Learning Research ,2006,7:665-704.
  • 10VERT R, VERT J P. Consistency and convergence rates of one-class SVM and related algorithms [ J ]. Machine Leaming Research, 2006,7(1414) :817-854.

共引文献41

同被引文献21

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部