摘要
NSGA-Ⅱ算法是通过模拟达尔文进化原理,采用选择、交叉和变异等操作算子,对个体种群进行繁殖和进化,以实现多目标优化。在NSGA-Ⅱ算法进化过程中,变异或交叉操作应用于个体的所有基因。但在真实的自然变异过程中,生物体根据等位基因频率的原理,不会整个基因发生变异,而只有少数基因会发生变异。同时,在交叉操作中该生物体仍有变异的机会。为了完全模拟自然变异过程,笔者提出了一种基于等位基因原理的NSGA-Ⅱ算法,该算法允许个体在变异过程中保持某些基因不变,在交叉操作中却仍有变异的机会。实验结果表明,与其他多目标进化算法相比,该算法显著提高了搜索性能,且具有收敛性强和不易陷入局部极小的特点。
NSGA-Ⅱ algorithm simulates Darwinian evolution principle and uses selection,crossover and mutation operators to evolve individual population in order to solve multi-objective optimization problems.In the evolution process of NSGA-Ⅱ algorithm,all genes of individuals are applied to mutation and crossover operation.But in the real natural mutation process,according to the principle of allele frequency,only a few genes will mutate,not the whole gene.At the same time,in the cross operation,the organism still has the chance of mutation.In order to fully simulate the natural mutation process,a new NSGA-Ⅱ algorithm based on allele principle is proposed.The algorithm allows individuals to keep some of their genes unchanged in the process of mutation,and there is still a chance of mutation in the crossover operation.The experimental results show that compared with other multi-objective evolutionary algorithms,the proposed algorithm can significantly improve the search performance,and has strong convergence and is not easy to fall into local minima.
作者
李清霞
LI Qingxia(School of Computer and Information,City College of Dongguan University of Technology,Dongguan 523419,China)
出处
《东莞理工学院学报》
2021年第1期38-42,95,共6页
Journal of Dongguan University of Technology
基金
国家科技创新2030-“新一代人工智能”重大项目(2018AAA0101301)
广东省普通高校特色创新项目(2018KTSCX314)。
关键词
多目标优化
进化计算
NSGA-Ⅱ
变异
交叉
multiobjective optimization
evolutionary computation
NSGA-Ⅱ
mutation
crossover