期刊文献+

顾及时变非高斯噪声的高斯和滤波及其导航应用

Gaussian Sum Filter Considering Time-Varying Non-GaussianNoise and Its Application in Navigation
下载PDF
导出
摘要 高斯和滤波可利用高斯混合模型精化非高斯噪声随机模型来提高估计精度,但导航测量环境的动态性和复杂性使非高斯噪声具有时变性特征,若GMM不随之调整会导致滤波解算失真。针对该问题,本文提出一种基于位移参数自适应估计的高斯和滤波算法。首先分析GMM位移参数对非高斯噪声拟合精度的影响,然后利用位移参数自适应技术修正GMM,进而改善高斯和滤波性能。实验结果表明,当GNSS/SINS量测模型存在时变非高斯噪声时,本文算法的滤波结果较传统高斯和滤波算法的波动小,抗干扰能力强,在实际应用中可进一步改善估计精度和稳定性。 The Gaussian sum filter refines the non-Gaussian noise stochastic model by Gaussian mixture model(GMM)to improve estimation accuracy.However,the dynamic and complex of the navigation measurement environment brings time-varying characteristics to non-Gaussian noise,resulting in distortion in the filter solution.To solve this problem,we propose a Gaussian sum extended Kalman filter(GSEKF)algorithm,which is improved by adaptive estimation of displacement parameters.We discuss the influence of GMM displacement parameters on the fitting accuracy of non-Gaussian noise,and GMM is refined by displacement parameter adaptive method.These improvements make the GSEKF algorithm more stable.The experimental results show that the proposed algorithm has less fluctuation and stronger anti-interference ability compared to the traditional Gaussian sum filtering algorithm when there is time-varying non-Gaussian noise in GNSS/SINS measurement model,which can further improve the estimation accuracy and stability in practical application.
作者 戴卿 冯威 许辉熙 DAI Qing;FENG Wei;XU Huixi(Faculty of Geosciences and Environmental Engineering,Southwest Jiaotong University,Chengdu 610031,China;Innovation and Practice Base for Postdoctors,Sichuan College of Architectural Technology,Deyang 618000,China)
出处 《大地测量与地球动力学》 CSCD 北大核心 2021年第3期274-278,共5页 Journal of Geodesy and Geodynamics
基金 国家自然科学基金(41704028) 国家重点研发计划(2016YFB0501900)。
关键词 GNSS/SINS 时变非高斯噪声 高斯混合模型 位移参数自适应 高斯和滤波 GNSS/SINS time-varying non-Gaussian noise Gaussian mixture model displacement parameter adaptive Gaussian sum filter
  • 相关文献

参考文献5

二级参考文献40

  • 1杨元喜,任夏,许艳.自适应抗差滤波理论及应用的主要进展[J].导航定位学报,2013,1(1):9-15. 被引量:86
  • 2张金槐.关于自适应滤波技术的一些思考[J].国防科技大学学报,1994,16(3):68-79. 被引量:21
  • 3崔先强,杨元喜.分类因子自适应抗差滤波[J].自然科学进展,2006,16(4):490-494. 被引量:21
  • 4杨元喜,高为广.两种渐消滤波与自适应抗差滤波的综合比较分析[J].武汉大学学报(信息科学版),2006,31(11):980-982. 被引量:31
  • 5THRUN S,LIU Y,KOLLER D,et al.Simultaneous lo-calization and mapping with sparse extended informationfilters[J].International Journal of Robotics Research,2004,23(7/8):693-716.
  • 6JUUER S J,UHLMANN J K,DURRANT WHYTEN H F.A new method for the nonlinear transformation of means andcovariances in filters and estimators[J].IEEE Trans,onAutomatic Control,2000,45(3):477-482.
  • 7SIMANDL M,DUNIK J.Derivative free estimation meth-ods:New results and performance analysis[J].Automat-ica,2009,45(7):1749-1757.
  • 8DOUCET A,DE FREITAS N,MURPHY K,et al.Rao-Blackwellised particle filtering for dynamic Bayesian net-works[C].16th Conference on Uncertainty in ArtificialIntelligence.San Francisco,Cam USA:Morgan Kauf-mann Pubishers,2000:176-183.
  • 9ARASARATNAM I,HAYKIN S.Cubature Kalmanfilters[J].IEEE Transactions on Automatic Control,2009,54(6):1254-1269.
  • 10DHITAL A.Bayesian filtering for dynamic systems withapplications to tracking[D].Barcelona,Spain:Univer-sitat Politecnica de Ctalunya,2010.

共引文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部