期刊文献+

Mechanistic insight into gold nanorod transformation in nanoscale confinement of ZIF-8

原文传递
导出
摘要 Core-shell hybrid nanomaterials have shown new properties and functions that are not attainable by their single counterparts.Nanoscale confinement effect by porous inorganic shells in the hybrid nanostructures plays an important role for chemical transformation of the core nanoparticles.However,metal-organic frameworks(MOFs)have been rarely applied for understanding mechanical insight into such nanoscale phenomena in confinement,although MOFs would provide a variety of properties for the confining environment than other inorganic shells such as silica and zeolite.Here,we examine chemical transformation of a gold nanorod core enclosed by a zeolitic imidazolate framework(ZIF)through chemical etching and regrowth,followed by quantitative analysis in the core dimension and curvature.We find the nanorod core shows template-effective behavior in its morphological transformation.In the etching event,the nanorod core is spherically carved from its tips.The regrowth on the spherically etched core inside the ZIF gives rise toformation of a raspberry-like branched nanostructure in contrast to the growth of an octahedral shape in bulk condition.We attribute the shell-directed regrowth to void space generated at the interfaces between the etched core and the ZIF shell,intercrystalline gaps in mult-domain ZIF shells,and local structural deformation from the acidic reaction conditions.
出处 《Nano Research》 SCIE EI CAS CSCD 2021年第1期66-73,共8页 纳米研究(英文版)
基金 the Korea Institute of Energy Technology Evaluation and Planning(No.20192050100060)from the Korea government Ministry of Trade,Industry,and Energy(MOTIE)and the Korea Basic Science Institute(KBSI)National Research Facilities&Equipment Center(NFEC)(No.2019R 1A 6C 1010042)from the Ministry of Education of Korea.In addition,this work was partially supported by the N ano.M aterial Technology D evelopm ent Program(No.2009-0082580) Basic Science Research Program(No.2020R1C1C1007568)through the National Research Foundation of Korea funded by the Ministry of Science,Information&Communication Technology(ICT),and Future Planning.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部