期刊文献+

基于小波分解的神经网络组合风速预测 被引量:6

Wind Speed Prediction Through Neural Network Combination Based on Wavelet Decomposition
下载PDF
导出
摘要 短期风速预测对于风电机组一次调频有着重要意义,而风速的随机性和波动性会直接影响到风速预测的精度。针对风速的上述特点提出了一种基于小波分解的神经网络组合风速预测方法。首先通过小波分解将不稳定的风速信号进行分解,从而得到不同频率的分量并进行重构;然后对高频分量分别采用Elman、BP神经网络预测并选取合适的权重比进行加权平均,低频分量采用Elman神经网络进行预测;最后将每一个预测的值进行叠加获得最终的预测值。算例分析表明:基于小波分解的神经网络组合预测方法的预测精度有很大提高,预测结果更具有可靠性。 Short-term wind speed prediction is of great significance for the primary frequency modulation of wind turbines,and the randomness and fluctuation of wind speed will directly affect the accuracy of wind speed prediction.In view of the above mentioned characteristics of wind speed,a wind speed prediction method through neural network combination based on wavelet decomposition was presented in this paper.Firstly,unstable wind speed signal was decomposed through wavelet decomposition so as to obtain different frequency components and complete reconstruction.Then,high-frequency components were predicted by use of Elman and BP neural networks respectively,and appropriate weight ratios were selected to obtain weighted average.Low-frequency components were predicted by use of Elman neural network.Finally,each predicted value was superimposed so as to obtain the final predicted value.The analysis of examples indicated that the accuracy of the neural network combination prediction method based on wavelet decomposition was greatly improved and prediction results became more reliable.
作者 刘辉 李岩 曹权 Liu Hui;Li Yan;Cao Quan(College of Energy and Power Engineering,Nanjing University of Science and Technology,Nanjing Jiangsu 210094,China)
出处 《电气自动化》 2021年第1期45-47,75,共4页 Electrical Automation
关键词 短期预测 小波分解 ELMAN神经网络 BP神经网络 组合预测 short-term prediction wavelet decomposition Elman neural network BP neural network combination prediction
  • 相关文献

参考文献6

二级参考文献68

  • 1丁明,张立军,吴义纯.基于时间序列分析的风电场风速预测模型[J].电力自动化设备,2005,25(8):32-34. 被引量:185
  • 2曲文龙,樊广佺,杨炳儒.基于支持向量机的复杂时间序列预测研究[J].计算机工程,2005,31(23):1-3. 被引量:32
  • 3吴国旸,肖洋,翁莎莎.风电场短期风速预测探讨[J].吉林电力,2005,33(6):21-24. 被引量:71
  • 4肖永山,王维庆,霍晓萍.基于神经网络的风电场风速时间序列预测研究[J].节能技术,2007,25(2):106-108. 被引量:68
  • 5GLOBAL WIND ENERGY COUNCIL. Global wind re- port [EB/OL].http://www.gwec.net/fileadmin/images/Publi cations / GWEC_annual_market_update_2010 2nd ition_ April_2011.pdf, 2011-10-05.
  • 6WORLD WIND ENERGY ASSOCIATION. World wind energy report 2010 [EB/OL]. http://www.wwindea.org/ home/images/stories/pdfs/worldwindenergyreport2010_s. pdf, 2011-10-27.
  • 7BOUZGOU H, BENOUDJIT N. Multiple architecture system for wind speed prediction [J].Applied Energy, 2011,88(7) :2463-2471.
  • 8MA L, LUAN S, JIANG C, et al. A review on the forecasting of wind speed and generated power [J].Re- newable Sustainable Energy Reviews,2009 (13) : 915-920.
  • 9BILGILI M, SAHIN B, YASAR A. Application of arti-ficial neural networks for the wind speed prediction of target station using reference stations data [J].Renew- able Energy, 2007,32 : 2350-60.
  • 10LI G, SHI J. On comparing three artificial neural net- works for wind speed forecasting [J].Applied Energy, 2010,87(7) :2313-2320.

共引文献80

同被引文献59

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部