摘要
为了解3,4-二硝基吡唑(DNP)/HMX悬浮液在不同影响因素下的流变行为,采用Brookfield R/S Plus流变仪对其流变性能进行测试,分析了HMX含量、粒度、颗粒级配、体系温度以及不同添加剂对悬浮液流变性能的影响。结果表明,DNP单质为牛顿流体,表观黏度约为16.4mPa·s,比TNT高82%,比DNAN高140%;同一剪切速率下,DNP/HMX悬浮液表观黏度随固含量的增加而增加,当HMX质量分数为30%时,悬浮液近似牛顿流体;HMX质量分数高于30%时,表观黏度随剪切速率的增加呈指数型下降的趋势愈发明显;悬浮液表观黏度随颗粒粒径的增大和温度的增加而降低,当温度从95℃升到105℃时,黏流活化能(E)从29211J/mol增至38458J/mol;固含量为60%时,平均粒径(d50)分别为16.6μm和575.6μm的HMX颗粒的最佳质量比为1∶5,此时悬浮液表观黏度最小。N-甲基-4-硝基苯胺(MNA)降低了悬浮液的表观黏度,乙酸丁酸纤维素(CAB)和微晶蜡-80(MV80)增加了悬浮液的表观黏度。
To understand the rheological behavior of 3,4-dinitropyrazole(DNP)/HMX suspension under different influencing factors,the rheological properties of DNP/HMX suspension were tested by using a Brookfield R/S rheometer,and the effects of HMX content,particle size,particle gradation,system temperature and chemical additives on rheological behaviors of suspensions were measured.Results show that DNP is an Newtonian fluid and its apparent viscosity is about 16.4mPa·s,which is 82%higher than TNT and 140%higher than DNAN.At the same shear rate,the apparent viscosity of DNP/HMX melt-cast explosive suspensions increases with the increase of solid content.When the solid content is 30%,the suspension is similar to an Newtonian fluid.However,when the solid content is higher than 30%,the apparent viscosity decreases exponentially with the increase of shear rate.In addition,the apparent viscosity of suspensions decrease with the increase of particle size or system temperature.The flow activation energies increase from 29211J/mol to 38458J/mol when the temperature rises from 95℃to 105℃.Furthermore,when the solid content is 60%,the optimal mass ratio of HMX particles with average particle size(d50)of 16.6μm and 575.6μm is 1∶5,and the apparent viscosity of suspension is the smallest.N-methyl-4-nitroaniline(MNA)makes the apparent viscosity of suspensions decrease,while cellulose acetate butyrate(CAB)and microcrystalline wax-80(MV80)make the apparent viscosity of suspensions increase.
作者
周霖
陈世煜
张向荣
倪磊
闫波
ZHOU Lin;CHEN Shi-yu;ZHANG Xiang-rong;NI Lei;YAN Bo(State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China;Gansu Yinguang Chemical Industry Group Co.,Ltd., Baiyin Gansu 730900, China)
出处
《火炸药学报》
EI
CAS
CSCD
北大核心
2021年第1期30-34,44,共6页
Chinese Journal of Explosives & Propellants
基金
国家自然科学基金(No.11772060)。