期刊文献+

基于Storm平台的多任务分组调度策略与实现 被引量:1

Multi-Task Group Scheduling Strategy and Implementation Based on Storm Platform
下载PDF
导出
摘要 随着大数据与人工智能技术的飞速发展,高性能,实时性的流式计算系统逐渐取代传统基于数据仓库的批量计算系统.Apache storm作为一款开源,高容错,实时处理的分布式大数据流式计算平台,支持任务平均分配策略,单机任务指定策略等多种任务分配方案.当任务拓扑结构中存在多个任务时,且集群中只有某些机器支持某一任务执行时,传统的任务调度方法只能实现将单一的任务分配给单一指定的机器,使得整个集群的资源没有充分的利用.通过调整任务调度策略,获得满足条件的机器队列,查看机器队列中可用工作节点,将指定任务均匀分配给可用工作节点,其他任务仍通过默认策略分配给集群中的剩余机器,实现多任务的分组调度策略. As big data and artificial intelligence technologies are booming,high-performance,real-time streaming computing systems are gradually replacing traditional batch computing systems based on data warehouses.As an opensource distributed big-data streaming computing platform that is highly fault-tolerant and can realize real-time processing,Apache storm supports a variety of task distribution schemes such as average task distribution strategy and single-machine task assignment strategy.When there are multiple tasks in the task topology and only certain machines in the cluster support the execution of a certain task,the traditional task scheduling method can only allocate a single task to a single designated machine,failing to make best use of resources in the entire cluster.By the adjustment to the task scheduling strategy,the eligible machine queue is obtained.Then,the assigned tasks are evenly distributed to available work nodes in the machine queue,and other tasks are distributed to the remaining machines in the cluster through the default strategy.In this way,multi-task group scheduling strategy can be achieved.
作者 王中华 柴小丽 WANG Zhong-Hua;CHAI Xiao-Li(The 32nd Research Institute of China Electronics Technology Group Corporation,Shanghai 201808,China)
出处 《计算机系统应用》 2021年第2期250-254,共5页 Computer Systems & Applications
关键词 Apache storm平台 分布式 流式计算 拓扑 多任务分组调度策略 Apache storm platform distributed stream computing topology multi-task group scheduling strategy
  • 相关文献

参考文献13

二级参考文献101

  • 1金澈清,钱卫宁,周傲英.流数据分析与管理综述[J].软件学报,2004,15(8):1172-1181. 被引量:161
  • 2沈轶炜,曾国荪.异构计算中一种图的非均衡划分算法[J].计算机科学,2006,33(6):260-263. 被引量:7
  • 3Yun D, Lee J. Research in green network for future Inter- net. Journal of KIISE, 2010, 28(1): 41-51.
  • 4Barroso L A, Holzle U. The case for energy-proportional computing. Computer, 2007, 40(12):33-37.
  • 5Ghemawat S, Gobioff H, Leung ST. The Google File Sys tem//Proceedings of the 19th ACM Symposium on Operating System Principles (SOSP2003). New York, USA, 2003: 29-43.
  • 6Dean J, Ghemawat S. MapReduce: Simplifed data processing on large clusters//Proceedings of the Conference on Operat- ing System Design and Implementation (OSDI). San Francis- co, USA, 2004: 137-150.
  • 7Chang F, Dean J, Ghemawat S, et al. Bigtable: A distribu- ted storage system for structured data//Proceedings of the 7th Symposium on Operating Systems Design and Implemen- tation (OSDI). Seattle, USA, 2006:205-218.
  • 8Benini L, Bogliolo A, Mieheli G D. A survey of design tech- niques for system level dynamic power management. IEEE Transactions on Very Large Scale Integration (VLSI) Sys- tems, 2000, 8(3): 299 -316.
  • 9Albers S. Energy efficient algorithms. Communications of the ACM, 2010, 53(5): 86-96.
  • 10Srivastava M B, Chandrakasan A P, Brodersen R W. Predic- tive system shutdown and other architectural techniques for energy efficient programmable computation. IEEE Transac- tions on Very Large Scale Integration (VLSI) Systems, 1996, 4(1): 42-55.

共引文献422

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部