期刊文献+

Tunable oxygen vacancy concentration in vanadium oxide as mass-produced cathode for aqueous zinc-ion batteries 被引量:8

原文传递
导出
摘要 Oxygen vacancy(Vö)is important in the modification of electrode for rechargeable batteries.However,due to the scarcity of suitable preparation strategy with controllable Vöincorporation,the impact of Vöconcentration on the electrochemical performances remains unclear.Thus,in this work,Vö-V_(2)O_(5)-PEDOT(VöVP)with tunable Vöconcentration is achieved via a spontaneous polymerization strategy,with the capability of mass-production.The introduction of poly(2,3-dihydrothieno-1,4-dioxin)(PEDOT)not only leads to the formation of Vöin V_(2)O_(5),but it also results in a larger interlayer spacing.The as-prepared Vö-V_(2)O_(5)-PEDOT-20.3%with Vöconcentration of 20.3%(denoted as VöVP-20)is able to exhibit high capacity of 449 mAh·g^(−1) at current density of 0.2 A·g^(−1),with excellent cyclic performance of 94.3% after 6,000 cycles.It is shown in the theoretical calculations that excessive Vöin V_(2)O_(5) will lead to an increase in the band gap,which inhibits the electrochemical kinetics and charge conductivity.This is further demonstrated in the experimental results as the electrochemical performance starts to decline when Vöconcentration increases beyond 20.3%.Thus,based on this work,scalable fabrication of high-performance electrode with tunable Vöconcentration can be achieved with the proposed strategy.
出处 《Nano Research》 SCIE EI CAS CSCD 2021年第3期754-761,共8页 纳米研究(英文版)
基金 This work was supported by the National Natural Science Foundation of China(No.21905037) China Postdoctoral Science Foundation(No.2020M670719) the Fundamental Research Funds for the Central Universities(No.3132019328).
  • 相关文献

参考文献7

二级参考文献226

  • 1Goodenough, J. B. Evolution of strategies for modem rechargeable batteries. Acc. Chem. Res. 2013, 46, 1053 1061.
  • 2Aric6, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366-377.
  • 3Lu, X. H.; Yu, M. H.; Wang, G. M.; Tong, Y. X.; Li, Y. Flexible solid-state supercapacitors: Design, fabrication and applications. Energy Environ. Sci. 2014, 7, 2160-2181.
  • 4Chen, H. S.; Cong, T. N.; Yang, W.; Tan, C. Q.; Li, Y. L.; Ding, Y. L. Progress in electrical energy storage system: A critical review. Prog. Nat. Sci. 2009, 19, 291 312.
  • 5Tarascon, J.-M.; Armand, M rechargeable lithium batteries Issues and challenges facing Nature 2001, 414, 359 367.
  • 6Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930-2946.
  • 7Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451,652557.
  • 8Chen, X. B.; Li, C.; Gritzel, M.; Kostecki, R.; Mao, S. S. Nanomaterials for renewable energy production and storage Chem. Soc. Rev. 2012, 41, 7909 7937.
  • 9Kang, K.; Meng, Y. S.; Brdger, J.; Grey, C. P.; Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006, 311,977-980.
  • 10Mai, L. Q; Tian, X. C.; Xu, X.; Chang, L.; Xu, L. Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 2014, 114, 11828 11862.

共引文献76

同被引文献48

引证文献8

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部