期刊文献+

Large-area flexible nanostripe electrodes featuring plasmon hybridization engineering 被引量:1

原文传递
导出
摘要 Multifunctional flexible Au electrodes based on one-dimensional(1D)arrays of plasmonic gratings are nanofabricated over large areas with an engineered variant of laser interference lithography optimized for low-cost transparent templates.Au nanostripe(NS)arrays achieve sheet resistance in the order of 20 Ohm/square on large areas(∼cm^(2))and are characterized by a strong and dichroic plasmonic response which can be easily tuned across the visible(VIS)to near-infrared(NIR)spectral range by tailoring their cross-sectional morphology.Stacking vertically a second nanostripe,separated by a nanometer scale dielectric gap,we form near-field coupled Au/SiO_(2)/Au dimers which feature hybridization of their localized plasmon resonances,strong local field-enhancements and a redshift of the resonance towards the NIR range.The possibility to combine excellent transport properties and optical transparency on the same plasmonic metasurface template is appealing in applications where low-energy photon management is mandatory like e.g.,in plasmon enhanced spectroscopies or in photon harvesting for ultrathin photovoltaic devices.The remarkable lateral order of the plasmonic NS gratings provides an additional degree of freedom for tailoring the optical response of the multifunctional electrodes via the excitation of surface lattice resonances,a Fano-like coupling between the broad localised plasmonic resonances and the collective sharp Rayleigh modes.
机构地区 Dipartimento di Fisica
出处 《Nano Research》 SCIE EI CAS CSCD 2021年第3期858-867,共10页 纳米研究(英文版)
基金 Open Access funding provided by Universita degli Studi di Genova within the CRUICARE Agreement.
  • 相关文献

参考文献9

二级参考文献114

  • 1Lakowicz, J. R. Plasmonics in biology and plasmon?controlled fluorescence. Plasmonics 2006, I, 5-33.
  • 2Lakowicz, J. R. Probe Design and Chemical Sensing; Plenum Press: New York, 1994; Vol. 4.
  • 3Luo, S.; Zhang, E.; Su, Y.; Cheng, T.; Shi, C. A review ofNIR dyes in cancer targeting and imaging. Biomaterials 2011, 32,7127-7138.
  • 4Licha, K.; Rietke, B.; Ntziachristos, V.; Becker, A.; Chance, B.; Semmler, W. Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: Synthesis, photophysical properties and spectroscopic in vivo characterization. Photochem. Photobiol. 2000, 72, 392-398.
  • 5Kronick, M. N. The use of phycobiliproteins as fluorescent labels in immunoassay. J. Immunol. Methods 1986, 92, 1-13.
  • 6Daehne, S.; Resch-Genger, U.; Wolfbeis, O. S. Near-Infrared Dyes for High Technology Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998.
  • 7Walker, N. J. Tech. Sight. A technique whose time has come. Science 2002, 296, 557-559.
  • 8Xie, F.; Baker, M. S.; Goldys, E. M. Homogeneous silver?coated nanoparticle substrates for enhanced fluorescence detection. J. Phys. Chern. B 2006, 110, 23085-23091.
  • 9Purcell, E. M.; Torrey H. c., Pound R. V. Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 1946, 69, 674.
  • 10Dulkeith, E.; Ringler, M.; Klar, T. A.; Feldman, J.; Munoz Javier, A.; Parak, W. J. Gold nanoparticles quench fluores?cence by phase induced radiative rate suppression. Nano Lett. 2005, 5, 585-589.

共引文献43

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部