摘要
随着5G网络的发展和应用,网络中的业务数量呈现出爆发式增长,网络中的带宽资源日趋紧张。为了提高网络资源利用率,并满足用户日益提高的业务服务质量要求,基于软件定义网络(SDN)提出了一种基于深度学习的流量工程算法(DL-TEA)。通过仿真证明该算法不仅能够实时地为业务计算一条高效的路径,同时还能够提升业务的QoS、网络资源利用率,降低网络阻塞率。
With the development and application of 5G network,the amount of traffic in network increased rapidly,which caused the lack of bandwidth resource.In order to improve the utilization of network resource and satisfy the critical user requirement for QoS(quality of service),a novel traffic engineering algorithm based on deep learning in SDN was proposed.At last,simulation results show that the proposed algorithm not only can calculate an efficient path for service in real time,but also can improve the QoS and the utilization of network resource,as well as reduce network congestion.
作者
胡道允
齐进
陆钱春
李锋
房红强
HU Daoyun;QI Jin;LU Qianchun;LI Feng;FANG Hongqiang(State Key Laboratory of Mobile Network and Mobile Multimedia Technology,Shenzhen 518057,China;University of Science and Technology of China,Hefei 230026,China)
出处
《电信科学》
2021年第2期107-114,共8页
Telecommunications Science