期刊文献+

基于深度学习的流量工程算法研究与应用 被引量:3

Research and application of traffic engineering algorithm based on deep learning
下载PDF
导出
摘要 随着5G网络的发展和应用,网络中的业务数量呈现出爆发式增长,网络中的带宽资源日趋紧张。为了提高网络资源利用率,并满足用户日益提高的业务服务质量要求,基于软件定义网络(SDN)提出了一种基于深度学习的流量工程算法(DL-TEA)。通过仿真证明该算法不仅能够实时地为业务计算一条高效的路径,同时还能够提升业务的QoS、网络资源利用率,降低网络阻塞率。 With the development and application of 5G network,the amount of traffic in network increased rapidly,which caused the lack of bandwidth resource.In order to improve the utilization of network resource and satisfy the critical user requirement for QoS(quality of service),a novel traffic engineering algorithm based on deep learning in SDN was proposed.At last,simulation results show that the proposed algorithm not only can calculate an efficient path for service in real time,but also can improve the QoS and the utilization of network resource,as well as reduce network congestion.
作者 胡道允 齐进 陆钱春 李锋 房红强 HU Daoyun;QI Jin;LU Qianchun;LI Feng;FANG Hongqiang(State Key Laboratory of Mobile Network and Mobile Multimedia Technology,Shenzhen 518057,China;University of Science and Technology of China,Hefei 230026,China)
出处 《电信科学》 2021年第2期107-114,共8页 Telecommunications Science
关键词 软件定义网络 流量工程 深度学习 服务质量 SDN traffic engineering deep learning QoS
  • 相关文献

参考文献4

二级参考文献40

  • 1中国电信集团科学技术委员会.中国电信IP骨干网络架构研究.2012.
  • 2Mc Keown N,Anderson T,Balakrishnan H,et al.Open Flow:enabling innovation in campus networks.ACM Communiations Review,2008(4).
  • 3Guo C X, Wu H T, Tan K, et ol. Dcell: a scalable and fault-tolerant network structure for data centers. ACM SIGCOMM Computer Communication Review, 2008, 38(4): 75-86.
  • 4Chen K, Hu C C, Zhang X, et al. Survey on routing in data centers: insights and future directions. IEEE Network, 2011, 25(4): 6-10.
  • 5Benson T, Anand A, Akella A, et traffic characteristics. Proceedings 2009 Workshop on Research Barcelona, Spain, 2009:65-72 a/. Understanding data center of the 1st ACM SIGCOMM on Enterprise Networking,.
  • 6Ho Trong Viet, Devi|le Y, Bonaventure O, et ol. Traffic engineering for multiple spanning tree protocol in large data centers. Proceedings of the 23rd International Teletraffic Congress (ITC23), San Francisco, USA, 2011:23-30.
  • 7Heller B, Seetharaman S, Mahadevan P, et al. ElasticTree: saving energy in data center networks. Proceedings of the 7th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2010, San Jose, USA, 2010:2-17.
  • 8Hu F, Hao Q, Bao K. A survey on software-defined network and OpenFlow: from concept to implementation. IEEE Communications Surveys & Tutorials, 2014, 16(4): 2181-2206.
  • 9McKeown N, Anderson T, Balakrishnan H, et ol. OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Computer Communication Review, 2008,38(2): 69-74.
  • 10A1-Fares M, Loukissas A, Vahdat A. A scalable commodity data center network architecture. ACM SIGCOMM Computer Communication Review, 2008, 38(4): 63-74.

共引文献50

同被引文献20

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部