摘要
为了检测出异常航迹数据从而提高航迹数据挖掘的精确性,将航迹异常检测转化为无监督学习问题,研究了基于VAE-LSTM的航迹异常检测算法。引入残差结构到LSTM中,建立残差门LSTM,通过将变分自编码器中的BP神经网络层替换为残差门LSTM层,实现对变分自编码器的改进,并构建了VAE-LSTM航迹异常检测模型。模型输入为航迹的速度、加速度、真航向和曲率半径运动特征.
出处
《交通信息与安全》
CSCD
北大核心
2020年第6期I0001-I0001,共1页
Journal of Transport Information and Safety